ВВЕДЕНИЕ В ИНФОРАЦИОННУЮ БИОЛОГИЮ

Н.А. Колчанов, С.А. Лашин

Электронно-лекционный курс разработан в рамках реализации Программы развития НИУ-НГУ 2012 год Лекция 7 Применение математического моделирования для исследования водно-электролитного обмена клетки транспортного эпителия

Водно-солевой обмен организма:

совокупность процессов поступления в организм, распределения во внутренних средах и выделения из организма воды и солей Регуляция водно-солевого обмена позволяет поддерживать не только постоянный состав, но и постоянный объем жидкостей тела, сохраняя практически одну и ту же концентрацию осмотически активных веществ.

Клинические аспекты нарушения водно-солевого обмена:

- накопление жидкости в организме, отёки
- дефицит жидкости, обезвоживание организма
- нарушением электролитного баланса (уменьшение или увеличение концентрации отдельных ионов)
- нарушение кислотно-щелочного равновесия

Почка: регуляция водно-солевого баланса организма

Почка: регуляция водно-солевого баланса организма

Главные клетки собирательных трубок наружного мозгового вещества почки (OMCD): регуляция реабсорбции воды и ионов

(Fenton R.,2007)

© Соленов Е.И., Иляскин А.В.

Поток ионов Na⁺

Плазматическая мембрана клетки

Цитоплазма

Внутри- и внеклеточные концентрации ионов

Проницаемость искусственных липидных бислоев для различных веществ

Основные типы трансмембранного транспорта

- пассивный (облегченная диффузия)
- первично-активный (энергия АТФ)
- вторично-активный (энергия градиента одного из переносимых веществ)

Пассивный транспорт воды (облегченная диффузия) через каналы

Водные каналы – аквапорины (AQP)

Пассивный транспорт ионов (облегченная диффузия) через каналы

Схема прохождения иона К+ через канал (Miller C., Nature, 2001)

Пассивный транспорт (облегченная диффузия) через белки-транспортеры

Lodish H., Molecular cell biology, 2000

Механизм транспорта глюкозы GLUT1 унипортером

Первично-активный транспорт (использование энергии АТФ)

Схема работы Na-K-насоса (Dubyak G., Adv Physiol Educ, 2004)

Вторично-активный транспорт (использование энергии электрохимического градиента одного из переносимых веществ)

Бойчук Н.В. Гистология, 2002

M. Burg, 1966

Экспериментальное изучение трансмембранного транспорта: перфузия собирательных трубок *in vitro*

Møbjerg N et al., J Exp Biol, 2002

Экспериментальное изучение трансмембранного транспорта: перфузия собирательных трубок *in vitro*

Математическое моделирование трансмембранного транспорта ионов: исторический экскурс

Первый закон Фика (1855):

 $J = -D \frac{\Delta C}{l}$

где J (моль см⁻² с⁻¹) – поток частиц через мембрану, D (см²/с) – коэффициент диффузии, ΔC - трансмембранная разница концентраций вещества ($\Delta C = C_{in} - C_{out}$) (моль/см³), l – толщина мембраны (см).

Уравнение электродиффузии Гольдмана (1943):

$$J_{i} = P_{i} \frac{z_{i}E_{m}}{kT} \frac{C_{i,out} \exp\left(-\frac{z_{i}E_{m}}{2kT}\right) - C_{i,in} \exp\left(\frac{z_{i}E_{m}}{2kT}\right)}{\exp\left(\frac{z_{i}E_{m}}{2kT}\right) - \exp\left(-\frac{z_{i}E_{m}}{2kT}\right)}, \quad E_{m} = \frac{RT}{F} \ln\left[\frac{P_{Na}[Na^{+}]_{out} + P_{K}[K^{+}]_{out} + P_{Cl}[Cl^{-}]_{in}}{P_{Na}[Na^{+}]_{in} + P_{K}[K^{+}]_{in} + P_{Cl}[Cl^{-}]_{out}}\right]$$

где J (моль см⁻² с⁻¹) – поток частиц *i*-го типа через мембрану, P_i – проницаемость мембраны для ионов *i*-го типа, z_i – заряд иона, E_m – трансмембранный потенциал, $C_{i, out}$ и $C_{i, in}$ – внеклеточная и внутриклеточная концентрация ионов, соответственно.

Построение математической модели клетки транспортного эпителия: механизмы трансмембранного транспорта

Математическая модель трансмембранного переноса ионов в клетках транспортного эпителия

Внутриклеточное количество неорганических ионов

$$\frac{dn_{Na}}{dt} = A[-3J_p + J_{Na} + J_{NKCC}]$$
$$\frac{dn_K}{dt} = A[2J_p + J_K + J_{KCC} + J_{NKCC}]$$
$$\frac{dn_{Cl}}{dt} = A[J_{Cl} + 2J_{NKCC} + J_{KCC}]$$

Объем клетки

$$\frac{dV}{dt} = (AV_{w} P_{w}) \left[\frac{(n_{Na^{+}} + n_{K^{+}} + n_{Cl^{-}} + X)}{V} - \Pi_{e} \right]$$

Трансмембранный потенциал

$$E_{m} = F (n_{Na^{+}} + n_{K^{+}} - n_{Cl^{-}} + zX) / C_{m} / A$$

Потоки ионов

Поток ионов через каналы

Ji

Поток ионов через котранспортеры

$$=P_{i}\frac{z_{i}E_{m}}{kT}\frac{C_{i,out}\exp\left(-\frac{z_{i}E_{m}}{2kT}\right)-C_{i,in}\exp\left(\frac{z_{i}E_{m}}{2kT}\right)}{\exp\left(\frac{z_{i}E_{m}}{2kT}\right)-\exp\left(-\frac{z_{i}E_{m}}{2kT}\right)},$$

$$J_{NKCC} = Q_{NKCC} \left[[Na^{+}]_{out} [K^{+}]_{out} [Cl^{-}]_{out}^{2} - \frac{n_{Na^{+}}}{V} \frac{n_{K^{+}}}{V} \left(\frac{n_{Cl^{-}}}{V}\right)^{2} \right]$$
$$J_{KCC} = Q_{KCC} \left[[K^{+}]_{out} [Cl^{-}]_{out} - \frac{n_{K^{+}}}{V} \frac{n_{Cl^{-}}}{V} \right],$$

Поток ионов через Na/K-насос

$$J_{P} = \frac{N_{PUMP}}{\Sigma} (\alpha - \beta)$$

Расчет соответствия между характеристиками стационарных состояний и значениями параметров

Параметры модели

1) Проницаемость мембраны для ионов: **Р**_{Na}, **Р**_K, **Р**_{Cl}

2) Плотность Na/Kнасоса в мембране **N**_{pump}

3) Параметр проницаемости котранспортеров: **Q_{KCC},Q_{NKCC}=0**

проницаемости Характеристики J_{in} стационарного состояния

1) Объем клетки **V**

2) Количество и концентрация ионов в клетке:

> $[Na^{+}]_{i} = n_{Na} / V$ $[K^{+}]_{i} = n_{K} / V$ $[Cl]_{i} = n_{Cl} / V$ $[X]_{i} = n_{X} / V$

3) Трансмембранный потенциал **Е**_m

4) Трансмембранный поток ионов:

 J_{Na} J_K J_{pump}

В пространстве параметров *P*_{*Na*}, *P*_{*K*}, *N***_{***PUMP***} существуют прямые, соответствующие стационарным состояниям системы, отличающимся только величиной трансцеллюлярного потока ионов**

Установлено однозначное соответствие между значениями параметров проницаемости (P_{Na}/P_K и N_{pump}/P_K) и характеристиками стационарного состояния модельной системы ([Na⁺]_{in}, [Cl⁻]_{in} и E_m)

© Соленов Е.И., Иляскин А.В.

Зависимость характеристик стационарного состояния системы от значений параметров P_{Na}/P_K и N_{pump}/P_K

Определение характеристик стационарного состояния $([Na^+]_{in}, [Cl^-]_{in} \ u \ E_m)$ клеток эпителия собирательных трубок

Оценка внутриклеточной концентрации натрия [Na⁺]_{in} в клетках ОМСD: **36.3±3.3** мМ (n=7) Оценка внутриклеточной концентрации хлора [Cl⁻]_{in} в клетках ОМСD: ~**32** мМ

Значение трансмембранной разности электрических потенциалов приняли равным E_m = -40 мВ [Stanton B.A. Characterization of apical and basolateral membrane conductances of rat inner medullary collecting duct// Am J Physiol, 1989; Pappas C.A. Electrophysiological properties of cultured outer medullary collecting duct cells// Am J Physiol, 1992]

Оценка параметров проницаемостей мембраны для эпителиальных клеток собирательных трубок почки: соотношение значений параметров

[Na⁺]_{in} =36.3 мМ [Cl⁻]_{in} = 32 мМ *E_m* = - 40 мВ

 $P_{Na}: P_K: N_{pump} = 1 : 3.72 : 1.01e-6$

Оценка параметров проницаемостей мембраны для эпителиальных клеток собирательных трубок почки: соотношение значений параметров

 P_{Na} : P_K : N_{pump} =

1 : 3.72 : 1.01e-6

Оценка параметров проницаемостей мембраны для эпителиальных клеток собирательных трубок почки: абсолютные значения

Оценка параметров проницаемостей мембраны для эпителиальных клеток собирательных трубок почки: абсолютные значения

Оценка интенсивности трансмембранного транспорта электролитов в клетках собирательных трубок		
Проницаемость мембраны для ионов Na+	P_{Na}	2.7×10-6 см/с
Проницаемость мембраны для ионов К+	P_K	1.0×10 ⁻⁵ см/с
Проницаемость мембраны для ионов Cl-	P_{Cl}	3.0×10-6 см/с
Плотность Na/K-насоса в мембране	N_{pump}	$2.7{ imes}10^{-12}$ моль/см 2
Трансмембранный ионный электродиффузионный поток ионов Na ⁺	J_{Na}	6.6×10 ⁻¹⁰ моль см²/с
Трансмембранный ионный электродиффузионный поток ионов К ⁺	J_K	– 4.4×10 ⁻¹⁰ моль см²/с
Трансмембранный поток ионов через Na/K-насос	J_{pump}	$2.2{ imes}10^{-10}$ моль см $^2/{ m c}$