Компьютерное моделирование созревания CFTR рецептора при муковисцидозе

Выполнила: Астапенко Дарья Антоновна, гр. 14412 ФЕН НГУ Научный руководитель: к.б.н. Колодкин Алексей Николаевич

Новосибирск, 24.05.2018

О заболевании. Муковисцидоз

Динамика численности пациентов согласно регистру больных муковисцидозом в России с 2011 по 2015 годы.

За 2016 год собрана информация о 3027 больных.

Amaral (2014) J Int Med 277; 155-166

Цель работы: изучить механизмы созревания CFTR рецептора и понять какие процессы контролируют концентрацию рецептора в плазматической мембране.

Задачи:

- построить динамическую модель созревания CFTR;
- сопоставить модель для здоровой/больной клетки с экспериментальными данными;
- найти сетевые мишени для оптимизации сборки и созревания рецептора с перспективой их применения в терапии муковисцидоза

Строение CFTR рецептора

Механизм контроля качества ER (ERQC)

Материалы и методы

Экспериментальные данные предоставлялись коллегами из Biosystems and Integrative Sciences Institute (BioISI) университета Лиссабона.

- Графическая схема в программе CellDesigner 4.4, позволяющей представить модель SBGN формате: System Biology Graphical Natation.
- Динамическая модель, основанная на системе дифференциальных уравнений в программе СОРАЅІ.

Схема созревания и сборки CFTR рецептора в CellDesigner4.4

Условные обозначения:

- S- синтезированный CFTR ;
- CNX- кальнексин- кальретикулиновый комплекс;
- G-I- глюкозидаза I; G-II -глюкозидаза II;
- HSC70 шапероны Hsp70, Hsc70 и их кошапероны;
- Man I -манозидаза I ; Man II маннозидаза II;
- EDEM- белковый комплекс EDEM;
- UGGT UDP-гликопротеин глюкозилтрансферазы (UGGT);
- Unknown machinery- неизвестный комплекс;
- Сор2 везикулы СОРІІ;
- R-endosom CFTR в рибосоме;
- R-ER CFTR в ER;
- R-Golgi CFTR в аппарате Гольджи;
- R-m9-G-G-G CFTR с тремя остатками глюкозы и 9 остатками маннозы;
- R-PM CFTR в PM;
- R-Ub CFTR, связанный с убиквитиновым комплексом;
- R(CFTR)-m7/8/9 (остатки маннозы)-Folded/CNX/G (свёрнутый/в комплексе с CNX/ с остатком глюкозы).

Динамическая модель в COPASI

Динамическая модель основана на системе дифференциальных уравнений. Скорости реакций описывались законом действующих масс: v = k·[A1] ⁿ¹·[A2] ⁿ²,

где v - скорость химической реакции, [Ai] - концентрация вещества Ai, k -константа скорости реакции (изначально взяты равными 0,1, изменяя некоторые из них, настраивали модель), ni - порядок реакции по веществу [Ai], в данном случае взятый за единицу.

Влияние модуляторов скорости реакций:

 $v = k \cdot [A1] \cdot [Активатор 1]$, в случае активации;

 $v = k \cdot [A1] / (1 + [Ингибитор 1])$, в случае ингибирования.

Уравнения в COPASI

Пример: образование и расход R-M9-G-G-G.

Образование R-M9-G-G-G происходит в реакции 1, потребление R-M9-G-G-G происходит в реакциях 2 и 4: $v1 = k1 \cdot [S]$,

v2= k2·[R-M9-G-G-G] · [HSC70],

```
v3= k3· [G-1/G-2] · [R-M9-G-G-G] · [CNX].
```

Мгновенное изменение концентрации R-M9-G-G-G:

d(R-M9-G-G-G)/dt = v1-v2-v3.

Аналогично мы делаем для всех переменных нашей модели и составляем систему дифференциальных уравнений, решая которую для определённых начальных условий, можем проследить изменение каждой переменной (участника модели) во времени.

Также мы можем вычислить концентрацию каждого участника модели в стационарном состоянии, когда все изменения концентраций равны 0. Например:

d(R-M9-G-G-G)/dt = v1-v2-v3 = 0.

Математическая модель в COPASI

Включает:

- 13 переменных
- 36 параметров

График изменений концентраций рецептора во времени в математической модели в COPASI

11

Симуляция эксперимента для здоровой клетки

ER1+ER2+ER3+ER4+ER5+ER6+ER7 GO-Glyco + PM + ES

Концентрация CFTR:

- в эндоплазматическом ретикулуме (ER1+ER2+ER3+ER4+ER5+ER6+ER7)
- в последующих компартментах- в Гольджи, плазматической мембране и эндосоме (GO-Glyco +PM+ES)

Сравнение концентраций рецептора в плазматической мембране для разных мутантов

Концентрация CFTR в плазматической мембране:

- (R-PM) здоровой клетки (Control),
- мутанта 1- ААА,
- мутанта 2- F508del,
- мутанта 3- 4RK revertant (4RK)

Распределение концентраций рецептора в мембранах для здоровой клетки и мутантов

В здоровой клетке концентрация рецептора в плазматической мембране составляет порядка 11%, для мутанта 1- ААА около 3.7 %, для мутанта 2- F508del около 0, 042%, для мутанта 3- 4RK revertant (4RK) - 0,073%.

- в эндоплазматическом ретикулуме (ЭПС);
- в Гольджи (RGolgi);
- в плазматической мембране(RPM);
- в эндосоме (REndosome)

Концентрационный контрольный коэффициент (Concentration Control Coefficient)

Концентрационный контрольный коэффициент позволяет определить влияние всех остальных реакций на концентрацию любого выбранного участника модели (в нашем случае той или иной формы рецептора):

$$C_{\nu i}^{S} = \lim_{\Delta \nu i \to 0} \frac{\Delta S/S}{\Delta \nu i/\nu i} = \frac{d S/S}{d\nu i/\nu i} = \frac{dln(S)}{dln(\nu i)}$$

Положительное значение, в данном случае, указывает на то, что при возрастании скорости одной из реакций концентрация интересующего нас компонента увеличится. Отрицательное значение показывает, что при возрастании скорости какой-либо реакции концентрация интересующего нас компонента уменьшится. При этом сумма всех концентрационных контрольных коэффициентов равна 0:

$$\sum_{i} C_{vi}^{S} = 0$$

Метаболический контрольный анализ (MCA) в COPASI

Ietabolic Control Analysis Result eady State found. All coefficients available. Elasticities Flux Control Coefficients Concentration Control Coefficients					Save to File	
					scaled	- 8
					5	
Rows (effect) Species (reduced system) Columns (cause) Reactions (reduced system)						la:
					4	-
	(re18)		(re19)	(re20)		^
R-m8	0	-2.4	4752e-17	-0.35674	-0.	
R-PM	-0.5	-5.3	2907e-16	-0.229829	-0.	4
R-m9-G	0	-1.8	7205e-18	-0.0170523	-0.	3
R-m8-Fol	0	-0.4	24713	-0.195037	-0.	:
R-m8-G	0	-2.0	8364e-17	-0.0939978	0.3	3
R-endosom	-1	-5.3	2907e-16	-0.229829	-0.	:
R-Ub	0	-1.6	1709e-17	-0.0170523	-0.	1
R-m9-Fol	0	-2.5	0522e-16	0.00122917	-0.	1
R-Golgi	0	-1		-0.229829	-0.	-
R-m9-G	0	9.41	293e-18	0.0155087	-0.	1.
¢)	

Концентрационный контрольный коэффициент для CFTR в плазматической мембране (R-PM) для реакций 18, 19, 20

Выводы

- Составлена наглядная схема, описывающая основные стадии созревания CFTR рецептора;
- Построена динамическая модель, способная воспроизводить поведение здоровой клетки и мутантов с различными нарушениями в процессе созревания CFTR, а главным образом, удалось реконструировать мутанта F508del;
- Модель нашла подтверждение в экспериментальных данных;
- Модель может предсказывать внутриклеточное распределение концентраций рецептора, как для здоровой клетки, так и для мутантов;
- Метаболический контрольный анализ выявил парадокс, заключающийся в том, что основной контроль за концентрацией рецептора осуществляется не на уровне транспорта рецептора в плазматическую мембрану, а на уровне его созревания в предшествующих компартментах