
An Introduction to
POSIX threads

Alexey A. Romanenko
arom@ccfit.nsu.ru

Based on Sun Microsystems' presentation

mailto:arom@ccfit.nsu.ru

What is this section about?

● POSIX threads overview
● Program compilation
● POSIX threads functions
● etc.

Agenda
● POSIX threads programming model
● POSIX threads overview

– Launching

– Threads synchronization

–

The SMP systems

BUS

Threads

Threads use and exist within the process
resources, yet are able to be scheduled by
the operating system and run as
independent entities within a process.

A thread can possess an independent flow
of control and could be schedulable
because it maintains its own.

Thread is not a process

Thread

Shared Memory Model

● All threads have access to the
same, globally shared, memory

● Data can be shared or private
● Shared data is accessible by all

threads
● Private data can be accessed

only by the threads that owns
● Explicit synchronization

POSIX threads

● POSIX specifies a set of interfaces (functions, header
files) for threaded programming commonly known as
POSIX threads, or Pthreads.

Threads attributes

● process ID

● parent process ID

● process group ID and session ID

● controlling terminal

● user and group Ids

● open file descriptors

● record locks

● file mode creation mask

● current directory and root
directory

● thread ID (the pthread_t data
type)

● signal mask
(pthread_sigmask)

● the errno variable

● alternate signal stack
(sigaltstack)

● real-time scheduling policy
and priority

Shared Distinct

Thread-safe functions

● POSIX.1-2001 requires that all functions specified in
the standard shall be thread-safe, except for the
following functions:

– crypt()

– ctime()

– encrypt()

– dirname()

– localtime()

– gethostbyname()

– etc. see specification.

Advantages and Drawbacks of
Threads

• Advantages:
• the overhead for creating a thread is significantly less

than that for creating a process (~ 2 milliseconds for
threads)

• multitasking, i.e., one process serves multiple clients
• switching between threads requires the OS to do much

less work than switching between processes

• Drawbacks:

• not as widely available as longer established features

• writing multithreaded programs require more careful
thought

• more difficult to debug than single threaded programs

• for single processor machines, creating several threads
in a program may not necessarily produce an increase
in performance (only so many CPU cycles to be had)

POSIX Threads (pthreads)

• IEEE's POSIX Threads Model:
• programming models for threads in a UNIX platform
• pthreads are included in the international standards

ISO/IEC9945-1

• pthreads programming model:
• creation of threads
• managing thread execution
• managing the shared resources of the process

• main thread:
• initial thread created when main() (in C) or PROGRAM

(in fortran) are invoked by the process loader
• once in the main(), the application has the ability to

create daughter threads
• if the main thread returns, the process terminates even if

there are running threads in that process, unless special
precautions are taken

• to explicitly avoid terminating the entire process, use
pthread_exit()

• thread termination methods:

• implicit termination:
• thread function execution is completed

• explicit termination:
• calling pthread_exit() within the thread
• calling pthread_cancel() to terminate other threads

• for numerically intensive routines, it is suggested that the
application calls p threads if there are p available
processors

Sample Pthreads Program in
C++ and Fortran 90/95

• The program in C++ calls the pthread.h header
file. Pthreads related statements are preceded by
the pthread_ prefix (except for semaphores).
Knowing how to manipulate pointers is important.

• The program in Fortran 90/95 uses the f_pthread
module. Pthreads related statements are
preceded by the f_pthread_ prefix (again, except for
semaphores).

• Pthreads in Fortran is still not an industry-wide
standard.

1 //**
2 // This is a sample threaded program in C++. The main thread creates
3 // 4 daughter threads. Each daughter thread simply prints out a message
4 // before exiting. Notice that I’ve set the thread attributes to joinable and
5 // of system scope.
6 //**
7 #include <iostream.h>
8 #include <stdio.h>
9 #include <pthread.h>
10
11 #define NUM_THREADS 4
12
13 void *thread_function(void *arg);
14
15 int main(void)
16 {
17 int i, tmp;
18 int arg[NUM_THREADS] = {0,1,2,3};
19
20 pthread_t thread[NUM_THREADS];
21 pthread_attr_t attr;
22
23 // initialize and set the thread attributes
24 pthread_attr_init(&attr);
25 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_J OINABLE);
26 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
27

28 // creating threads
1 for (i=0; i<NUM_THREADS; i++)
2 {
3 tmp = pthread_create(&thread[i], &attr, thread_function, (void *)&arg[i]);
4
5 if (tmp != 0)
6 {
7 cout << "Creating thread " << i << " failed!" << endl;
8 return 1;
9 }
10 }
11
12 // joining threads
13 for (i=0; i<NUM_THREADS; i++)
14 {
15 tmp = pthread_join(thread[i], NULL);
16 if (tmp != 0)
17 {
18 cout << "J oing thread " << i << " failed!" << endl;
19 return 1;
20 }
21 }
22
23 return 0;
24 }
25

54 //***
55 // This is the function each thread is going to run. It simply asks
56 // the thread to print out a message. Notice the pointer acrobatics.
57 //***
58 void *thread_function(void *arg)
59 {
60 int id;
61
62 id = *((int *)arg);
63
64 printf("Hello from thread %d!\n", id);
65 pthread_exit(NULL);
66 }

• How to compile:
• in Linux use:

> {C++ comp} –D_REENTRANT hello.cc –lpthread –o hello

• it might also be necessary for some systems to define
the _POSIX_C_SOURCE (to 199506L)

• Creating a thread:
int pthread_create(pthread_t *thread, pthread_attr_t *attr, void *(*thread_function)

(void *), void *arg);

• first argument – pointer to the identifier of the created thread
• second argument – thread attributes
• third argument – pointer to the function the thread will execute
• fourth argument – the argument of the executed function (usually a

struct)
• returns 0 for success

• Waiting for the threads to finish:
int pthread_join(pthread_t thread, void **thread_return)

• main thread will wait for daughter thread thread to finish
• first argument – the thread to wait for
• second argument – pointer to a pointer to the return

value from the thread
• returns 0 for success
• threads should always be joined; otherwise, a thread

might keep on running even when the main thread has
already terminated

1 !**
2 ! This is a sample threaded program in Fortran 90/95. The main thread
3 ! creates 4 daughter threads. Each daughter thread simply prints out
4 ! a message before exiting. Notice that I've set the thread attributes to
5 ! be joinable and of system scope.
6 !**
7 PROGRAM hello
8
9 USE f_pthread
10 IMPLICIT NONE
11
12 INTEGER, PARAMETER :: num_threads = 4
13 INTEGER :: i, tmp, flag
14 INTEGER, DIMENSION(num_threads) :: arg
15 TYPE(f_pthread_t), DIMENSION(num_threads) :: thread
16 TYPE(f_pthread_attr_t) :: attr
17
18 EXTERNAL :: thread_function
19
20 DO i = 1, num_threads
21 arg(i) = i – 1
22 END DO
23
24 !initialize and set the thread attributes
25 tmp = f_pthread_attr_init(attr)
26 tmp = f_pthread_attr_setdetachstate(attr, PTHREAD_CREATE_J OINABLE)
27 tmp = f_pthread_attr_setscope(attr, PTHREAD_SCOPE_SYSTEM)
28

29 ! this is an extra variable needed in fortran (not needed in C)
30 flag = FLAG_DEFAULT
31
32 ! creating threads
33 DO i = 1, num_threads
34 tmp = f_pthread_create(thread(i), attr, flag, thread_function, arg(i))
35 IF (tmp /= 0) THEN
36 WRITE (*,*) "Creating thread", i, "failed!"
37 STOP
38 END IF
39 END DO
40
41 ! joining threads
42 DO i = 1, num_threads
43 tmp = f_pthread_join(thread(i))
44 IF (tmp /= 0) THEN
45 WRITE (*,*) "J oining thread", i, "failed!"
46 STOP
47 END IF
48 END DO
49

50 !**
51 ! This is the subroutine each thread is going to run. It simply asks
52 ! the thread to print out a message. Notice that f_pthread_exit() is
53 ! a subroutine call.
54 !**
55 SUBROUTINE thread_function(id)
56
57 IMPLICIT NONE
58
59 INTEGER :: id, tmp
60
61 WRITE (*,*) "Hello from thread", id
62 CALL f_pthread_exit()
63
64 END SUBROUTINE thread_function

• How to compile:

• only available in AIX 4.3 and above:
> xlf95_r –lpthread hello.f –o hello

• the compiler should be thread safe

• The concept for creating and joining threads are
the same in C/C++ except that pointers are not
directly involved in fortran.

• Note that in fortran some pthread calls are function
calls while some are subroutine calls.

Thread Attributes

• detach state attribute:
int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

• detached – main thread continues working without
waiting for the daughter threads to terminate

• joinable – main thread waits for the daughter threads to
terminate before continuing further

• contention scope attribute:
int pthread_attr_setscope(pthread_attr_t *attr, int *scope);

• system scope – threads are mapped one-to-one on the
OS's kernel threads (kernel threads are entities that
scheduled onto processors by the OS)

• process scope – threads share a kernel thread with
other process scoped threads

Threads Programming Model

• pipeline model – threads are run one after the other

• master-slave model – master (main) thread doesn't do any
work, it just waits for the slave threads to finish working

• equal-worker model – all threads work

Thread Synchronization
Mechanisms

• Mutual exclusion (mutex):

• guard against multiple threads modifying the same
shared data simultaneously

• provides locking/unlocking critical code sections where
shared data is modified

• each thread waits for the mutex to be unlocked (by the
thread who locked it) before performing the code section

• Basic Mutex Functions:
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

• a new data type named pthread_mutex_t is designated for
mutexes

• a mutex is like a key (to access the code section) that is
handed to only one thread at a time

• the attribute of a mutex can be controlled by using the
pthread_mutex_init() function

• the lock/unlock functions work in tandem

#include <pthread.h>
...
pthread_mutex_t my_mutex; // should be of global scope
...
int main()
{
 int tmp;
 ...
 // initialize the mutex
 tmp = pthread_mutex_init(&my_mutex, NULL);
 ...
 // create threads
 ...
 pthread_mutex_lock(&my_mutex);
 do_something_private();
 pthread_mutex_unlock(&my_mutex);
 ...

return 0;
}

• Whenever a thread reaches the lock/unlock block, it first determines if
the mutex is locked. If so, it waits until it is unlocked. Otherwise, it
takes the mutex, locks the succeeding code, then frees the mutex and
unlocks the code when it's done.

• Counting Semaphores:

• permit a limited number of threads to execute a section
of the code

• similar to mutexes

• should include the semaphore.h header file

• semaphore functions do not have pthread_ prefixes;
instead, they have sem_ prefixes

• Basic Semaphore Functions:
• creating a semaphore:
int sem_init(sem_t *sem, int pshared, unsigned int value);

• initializes a semaphore object pointed to by sem

• pshared is a sharing option; a value of 0 means the
semaphore is local to the calling process
• gives an initial value value to the semaphore

• terminating a semaphore:
int sem_destroy(sem_t *sem);

• frees the resources allocated to the semaphore sem

• usually called after pthread_join()

• an error will occur if a semaphore is destroyed for
which a thread is waiting

• semaphore control:
int sem_post(sem_t *sem);
int sem_wait(sem_t *sem);

• sem_post atomically increases the value of a
semaphore by 1, i.e., when 2 threads call sem_post
simultaneously, the semaphore's value will also be
increased by 2 (there are 2 atoms calling)

• sem_wait atomically decreases the value of a
semaphore by 1; but always waits until the
semaphore has a non-zero value first

#include <pthread.h>
#include <semaphore.h>
...
void *thread_function(void *arg);
...
sem_t semaphore; // also a global variable just like mutexes
...
int main()
{
 int tmp;

...
 // initialize the semaphore

tmp = sem_init(&semaphore, 0, 0);
...
// create threads
pthread_create(&thread[i], NULL, thread_function, NULL);
...
while (still_has_something_to_do())
{

sem_post(&semaphore);
 ...

}
...
pthread_join(thread[i], NULL);
sem_destroy(&semaphore);

 return 0;
}

void *thread_function(void *arg)
{

sem_wait(&semaphore);
perform_task_when_sem_open();
...
pthread_exit(NULL);

}

• the main thread increments the semaphore's count
value in the while loop

• the threads wait until the semaphore's count value is
non-zero before performing perform_task_when_sem_open()
and further

• daughter thread activities stop only when pthread_join() is
called

• Condition Variables:

• used for communicating information about the state of
shared data

• can make the execution of sections of a codes by a
thread depend on the state of a data structure or
another running thread

• condition variables are for signaling, not for mutual
exclusion; a mutex is needed to synchronize access to
shared data

Concluding Remarks

• when making an SMP program, try the simpler approach
first:

• OpenMP directives

• SMP-enabled libraries

• automatic SMP capabilities of compilers

• better performance is not guaranteed

• debugging is difficult

• When mixing with MPI, the simplest way is to let only 1
thread handle the communications.

• So why threads? In some cases, it is the only viable
approach.

References

• Programming with POSIX threads, by D. Butenhof, Addison Wesley
(1997).

• Beginning Linux Programming, by R. Stones and N. Matthew, Wrox
Press Ltd (1999).

• www.opengroup.org/onlinepubs/007908799/xsh/threads.html
• www.research.ibm.com/actc/Tools/thread.htm
• www.unm.edu/cirt/introductions/aix_xlfortran/xlflr101.htm
• www.emsl.pnl.gov:2080/capabs/mset/training/ibmSP/fthreads/fthreads.html

• Programming with Threads, by G. Bhanot and R. Walkup
• Appendix: Mixed models with Pthreads and MPI, V. Sonnad, C. Tamirisa,

and G. Bhanot

http://www.opengroup.org/onlinepubs/007908799/xsh/threads.html
http://www.research.ibm.com/actc/Tools/thread.htm
http://www.unm.edu/cirt/introductions/aix_xlfortran/xlflr101.htm
http://www.emsl.pnl.gov:2080/capabs/mset/training/ibmSP/fthreads/fthreads.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Advantages and Drawbacks of Threads
	PowerPoint Presentation
	POSIX Threads (pthreads)
	Slide 14
	Slide 15
	Sample Pthreads Program in C++ and Fortran 90/95
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Thread Attributes
	Slide 27
	Threads Programming Model
	Thread Synchronization Mechanisms
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Concluding Remarks
	Slide 39
	References

