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What is this section about?

● OpenMP overview
● OpenMP program compilation
● OpenMP execution environment
● Ways to make parallel program with OpenMP
● etc.



Agenda
● The OpenMP programming model
● OpenMP guide tour
● OpenMP overview

–   Clauses
–   Worksharing constructs
–   Synchronization constructs
–   Environment variables
–   Global Data
–   Runtime functions



OpenMP Origins
● In the early 90's, vendors of SMP supplied similar, directive-

based, Fortran programming extensions:
– The user would augment a serial Fortran program with 

directives specifying which loops were to be parallelized
– The compiler would be responsible for automatically 

parallelizing such loops across the SMP processors 
● Implementations were all functionally similar, but were diverging
● First attempt at a standard was the draft for ANSI X3H5 in 1994. 

It was never adopted, largely due to waning interest as 
distributed memory machines became popular.

● The OpenMP standard specification started in the spring of 
1997, taking over where ANSI X3H5 had left off, as newer 
shared memory machine architectures started to become 
prevalent. 



OpenMP today

● The OpenMP programming model is a powerful, yet 
compact, de-facto standard for Shared Memory 
Programming

● Current release of the standard: 3.0
● Specifications released May 2008



Goals of OpenMP

● Provide a standard among a variety of shared memory 
architectures/platforms

● Establish a simple and limited set of directives for 
programming shared memory machines. Most of the 
work is done by just 3 or 4 directives.

● Provide capability to incrementally parallelize a 
program, unlike message-passing libraries which 
typically require an all or nothing approach.

● Provide the capability to implement both coarse-grain 
and fine-grain parallelism

● Support Fortran (77, 90, and 95), C, and C++ 



The SMP systems

BUS



Shared Memory Model
● All threads have access to the  

same, globally shared,  memory
● Data can be shared or private
● Shared data is accessible by all 

threads
● Private data can be accessed 

only by the threads that owns
● Data transfer is transparent to 

the programmer
● Synchronization takes place, but 

it is mostly implicit



About Data
● In a shared memory parallel program variables have a 

"label" attached to them:
–  Labelled "Private"  Visible to one thread only⇨

● Change made in local data, is not seen by 
others

● Example - Local variables in a function that is 
executed in parallel

– Labelled "Shared"  Visible to all threads⇨

●  Change made in global data, is seen by all 
others

● Example - Global data



The OpenMP execution model



Example

Sequential code

void main(){
  double x[1000];
  for(i=0; i<1000; i++){
    calc_smth(&x[i]);
  }
}

Parallel code

void main(){
  double x[1000];
#pragma omp parallel for ...
  for(i=0; i<1000; i++){
    calc_smth(&x[i]);
  }
}



OpenMP Guided Tour

http://www.openmp.org



When to consider using 
OpenMP?

● The compiler may not be able to do the parallelization 
in the way you like to see it:

● A loop is not parallelized
– The data dependency analysis is not able to 

determine whether it is safe to parallelize or not
– The granularity is not high enough
– The compiler lacks information to parallelize at the 

highest possible level
● This is when explicit parallelization through OpenMP 

directives and functions comes into the picture



Terminology
● OpenMP Team := Master + Workers
● A Parallel Region is a block of code executed by all threads 

simultaneously
– The master thread always has thread ID 0
– Thread adjustment (if enabled) is only done before entering a 

parallel region
– Parallel regions can be nested, but support for this is 

implementation dependent
– An "if" clause can be used to guard the parallel region; in case 

the condition evaluates to "false", the code is executed serially
● A work-sharing construct divides the execution of the enclosed 

code region among the members of the team; in other words: they 
split the work



A loop parallelized with 
OpenMP

#pragma omp parallel shared(a,b)
{
#pragma omp for private(i) 
  for(i=0; i<10000; i++)
    a[i] = a[i] + b[i];
}

Clauses

Implicit barrier



Components of OpenMP



Directive format

● C: directives are case sensitive
– Syntax: #pragma omp directive [clause [clause] ...]

● Continuation: use \ in pragma
● Conditional compilation: _OPENMP macro is set



Example
#ifdef _OPENMP
printf(“Caution: The program was compiled with ”

“OpenMP and can consume all CPU resources ”
“ of your PC!\n”);

#endif
...
#omp parallel for private(i,j) \

shared(a,b,c)
{

for(i=0; i<100; i++)
for(j=0; j<100; j++)

a[i] = b[i][j]*c[j];
}



Some OpenMP Clauses



About OpenMP clauses

● Many OpenMP directives support clauses
● These clauses are used to specify additional 

information with the directive
● For example, private(a) is a clause to the for directive:

– #pragma omp for private(a)
● Before we present an overview of all the directives, we 

discuss several of the OpenMP clauses first
● The specific clause(s) that can be used, depends on 

the  directive



The if/private/shared clauses
● if (scalar expression)

– Only execute in parallel if expression is true
– Otherwise, execute serially

● private (list)
– No storage association with original object
– All references are to the local object
– Values are undefined on entry and exit

● shared (list)
– Data is accessible by all threads in the team
– All threads access the same address space



Example

#omp parallel for private(i,j) \
shared(a,b,c) if(M>100)

{
for(i=0; i<M; i++)

for(j=0; j<100; j++)
a[i] = b[i][j]*c[j];

}



About storage association

● Private variables are undefined on entry and exit of 
the  parallel region

● The value of the original variable (before the parallel 
region) is undefined after the parallel region!

● A private variable within a parallel region has no 
storage association with the same variable outside of 
the region

● Use the first/last private clause to override this 
behaviour

● We will illustrate these concepts with an example



The first/last private clauses

● firstprivate (list)
– All variables in the list are initialized with the value 

the original object had before entering the parallel 
construct

● lastprivate (list)
– The thread that executes the sequentially last 

iteration or section updates the value of the objects 
in the list



Example

#pragma omp parallel
{
#pragma omp for private(i) lastprivate(k)
  for(i=0; i<10; i++)
      k = i*i;
}        
printf("k = %d\n", k); // k == 81



Example
int myid, a; 

a = 10;
#pragma omp parallel default(private) \
                     firstprivate(a) 
{
   myid = omp_get_thread_num();
   printf("Thread%d: a = %d\n", myid, a);
   a = myid;
   printf("Thread%d: a = %d\n", myid, a);
}

Thread1: a = 10
Thread1: a = 1
Thread2: a = 10
Thread0: a = 10
Thread3: a = 10
Thread3: a = 3
Thread2: a = 2
Thread0: a = 0



The default clause

● default ( none | shared )
● none

– No implicit defaults
– Have to scope all variables explicitly

● shared
– All variables are shared
– The default in absence of an explicit "default" 

clause



The reduction clause - example

● Example:
#pragma omp parallel

{
#pragma for shared(x, sum) private(i)

for(i=0; i<10000; i++)
sum = sum + x[i];

}
● Care needs to be taken when updating shared 

variable SUM
● With the reduction clause, the OpenMP compiler 

generates code such that a race condition is avoided



The reduction clause
● reduction ( operator : list )

– Reduction variable(s) must be shared variables
– Note that the value of a reduction variable is undefined from 

the moment the first thread reaches the clause till the 
operation has completed

– The reduction can be hidden in a function call
#pragma omp parallel

{
#pragma for shared(x) private(i) reduction(+:sum)
    for(i=0; i<10000; i++)

sum += x[i];
}

#pragma omp parallel
{
#pragma for shared(x) private(i) reduction(min:gmin)

for(i=0; i<10000; i++)
gmin = min(gmin, x[i]);

}



The nowait clause

● To minimize synchronization, some OpenMP 
directives/pragmas support the optional nowait clause

● If present, threads will not synchronize/wait at the end 
of that particular construct

#pragma omp for nowait
{
   ...
}



The parallel region

● A parallel region is a block of code executed by 
multiple threads simultaneously

#pragma omp parallel [clause[[,] clause] ...]
{
    "this will be executed in parallel"
} //implied barrier



The parallel region - clauses
● A parallel region supports the following clauses:

– if (scalar expression)
– private (list)
– shared (list)
– default (none|shared)
– reduction (operator: list)
– copyin (list)
– firstprivate (list)
– num_threads (scalar_int_expr)



Worksharing Directives



Work-sharing constructs

● for, section, single
– The work is distributed over the threads
– Must be enclosed in a parallel region
– Must be encountered by all threads in the team, or 

none at all
– No implied barrier on entry; implied barrier on exit 

(unless nowait is specified)
– A work-sharing construct does not launch any new 

threads



Work-sharing constructs



The omp for directive
● The iterations of the loop are distributed over the 

threads
     #pragma omp for [clause[[,] clause] ...]
         <original for-loop>
● Clauses supported:

– private
– firstprivate
– lastprivate
– reduction
– ordered
– schedule
– nowait



Load balancing
● Load balancing is an important aspect of performance
● For regular operations (e.g. a vector addition), load 

balancing is not an issue
● For less regular workloads, care needs to be taken in 

distributing the work over the threads
● Examples of irregular workloads:

– Transposing a matrix
– Multiplication of triangular matrices
– Parallel searches in a linked list

● For these irregular situations, the schedule clause 
supports various iteration scheduling algorithms



The schedule clause

● schedule ( static | dynamic | guided [, chunk] | runtime)
● static [, chunk]

– Distribute iterations in blocks of size "chunk" over 
the threads in a round-robin fashion

– In absence of "chunk", each thread executes 
approx. N/P chunks for a loop of length N and P 
threads



The schedule clause
● dynamic [, chunk]

– Fixed portions of work; size is controlled by the 
value of chunk

– When a thread finishes, it starts on the next portion 
of work 

● guided [, chunk]
– Same dynamic behaviour as "dynamic", but size of 

the portion of work decreases exponentially
● runtime

– Iteration scheduling scheme is set at runtime 
through environment variable OMP_SCHEDULE



The SECTIONS directive

● The individual code blocks are distributed over the 
threads

● Clauses supported:
– private
– firstprivate
– lastprivate
– reduction
– nowait



Synchronization Controls



Barrier

● Suppose we run each of these two loops in parallel over i:
      for (i=0; i < N; i++)
          a[i] = b[i] + c[i];
      for (i=0; i < N; i++)
          d[i] = a[i] + b[i];

● This may give us a wrong answer
● We need to have updated all of a[ ] first, before using a[ ]



Barrier

● Each thread waits until all others have reached this 
point:
– #pragma omp barrier



When to use barriers?

● When data is updated asynchronously and the data 
integrity is at risk

● Examples:
– Between parts in the code that read and write the 

same section of memory
– After one timestep/iteration in a solver

● Unfortunately, barriers tend to be expensive and also 
may not scale to a large number of processors

● Therefore, use them with care



Critical region
● If sum is a shared variable, this loop can not be run in parallel
        for (i=0; i < N; i++){

               .....
            sum += a[i];
               .....
        }

●  We can use a critical region for this:
        for (i=0; i < N; i++){

               .....
         //one at a time can proceed
             sum += a[i];
         //next in line, please
               .....
        }



Critical region

● Useful to avoid a race condition, or to perform I/O (but 
which still will have random order)

● Be aware that your parallel computation may be 
serialized and so this could introduce a scalability 
bottleneck (Amdahl's law)

● All threads execute the code, but only one at a time:
– #pragma omp critical [(name)]

{<code-block>}
– #pragma omp atomic

<statement>



SINGLE and MASTER construct

● Only one thread in the team executes the code 
enclosed

    #pragma omp single [clause[[,] clause] ...]
{  <code-block>  }

● Only the master thread executes the code block:
    #pragma omp master

{<code-block>}



OpenMP Environment Variables



OpenMP environment variables

● OMP_NUM_THREADS n
● OMP_SCHEDULE “schedule,[chunk]”
● OMP_DYNAMIC { TRUE | FALSE }
● OMP_NESTED { TRUE | FALSE }



OpenMP Runtime Functions



OpenMP runtime environment
● OpenMP provides various user-callable functions

– To control and query the parallel environment
– General purpose semaphore/lock routines

● Nested locks are supported, but will not be 
covered here

● The runtime functions take precedence over the 
corresponding environment variables

● Recommended to use under control of an #ifdef for 
_OPENMP (C/C++) 

● C/C++ programs need to include <omp.h>



Runtime library overview
omp_set_num_threads 
omp_get_num_threads 
omp_get_max_threads 
omp_get_thread_num  
omp_get_num_procs
omp_in_parallel
omp_set_dynamic     
omp_get_dynamic     
omp_set_nested      
omp_get_nested      
omp_get_wtime       

omp_get_wtick       

Set number of threads
Return number of threads in team
Return maximum number of threads
Get thread ID
Return maximum number of processors
Check whether in parallel region
Activate dynamic thread adjustment
Check for dynamic thread adjustment
Activate nested parallelism 
Check for nested parallelism
Returns wall clock time
Number of seconds between clock ticks



OpenMP locking routines
● Locks provide greater flexibility over critical sections and 

atomic updates:
– Possible to implement asynchronous behaviour
– Not block structured

● The so-called lock variable, is a special variable:
– C/C++: type omp_lock_t and omp_nest_lock_t for nested 

locks
● Lock variables should be manipulated through the API only
● It is illegal, and behaviour is undefined, in case a lock 

variable is used without the appropriate initialization



Nested locking
● Simple locks: may not be locked if already in a locked state
● Nestable locks: may be locked multiple times by the same 

thread before being unlocked
● The interface for functions dealing with nested locks is 

similar (but using nestable lock variables):
   Simple locks                Nestable locks
   omp_init_lock               omp_init_nest_lock
   omp_destroy_lock        omp_destroy_nest_lock
   omp_set_lock               omp_set_nest_lock
   omp_unset_lock           omp_unset_nest_lock
   omp_test_lock              omp_test_nest_lock



OpenMP and Compilers
● OpenMP v2.5

– Visual C++ 2005 (Professional and Team System editions)
– Intel Parallel Studio 
– Sun Studio
– Portland Group compilers
– GCC  since version 4.2.

● OpenMP v3.0
– GCC 4.3.1
– Nanos compiler
– Intel Fortran and C/C++ versions 11.0 and 11.1 Compilers, and 

Intel Parallel Studio.
– IBM XL C/C++ Compiler
– Sun Studio 12 update 1 



Program compilation

● gcc -fopenmp -o test test.c
● icc -openmp -o test test.c



Summary

● OpenMP provides for a compact, but yet powerful, 
programming model for shared memory programming

● OpenMP supports Fortran, C and C++
● OpenMP programs are portable to a wide range of 

systems
● An OpenMP program can be written such that the 

sequential version is still “built-in”
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