
Parallel languages as extensions
of sequential ones

Alexey A. Romanenko
arom@ccfit.nsu.ru

mailto:arom@ccfit.nsu.ru

What this section about?

● Computers. History. Trends.
● What is parallel program?
● What is parallel programming for?
● Features of parallel programs.
● Development environment.
● etc.

Agenda

1. Sequential program

2. Applications, required computational power.
3. What does parallel programming for?

4. Parallelism inside ordinary PC.
5. Architecture of modern CPUs.
6. What is parallel program?

7. Types of parallelism.

Agenda

8. Types of computational installations.
9. Specificity of parallel programs.

10.Amdahl's law
11.Development environment
12.Approaches to development of parallel

programs. Cost of development.
13.Self-test questions

History

George Boole

Charles Babbage

Alan Turing

John von Neumann

Claude Elwood Shannon

Norbert Wiener
Henry Edward Roberts

Sciences

● Computer science is the study of the
theoretical foundations of information
and computation, and of practical
techniques for their implementation and
application in computer systems.

● Cybernetics is the interdisciplinary study
of the structure of regulatory system

Altair 8800 Computer with
8-inch floppy disk system

Difference machine

Arithmometer

Sequential program

A program perform calculation of a function
F = G(X)

for example:

a*x2+b*x+c=0, a != 0.

x1=(-b-sqrt(b2-4ac))/(2a),
x2=(-b+sqrt(b2-4ac))/(2a)

Turing machine

Plasma modeling

N ~ 106

dX
j
 ~ F

j
 dT2

F
j
 ~ sum

i
(q

i
, q

j
)

Complexity ~ O(N*N)
more then 1012 * 100...1000 operations

Resource consumable
calculations

● Nuclear/Gas/Hydrodynamic physics
● Bio-informatics
● Chemical modeling
● Oil&Gas drilling
● Medicine
● Signal processing
● etc.

Parallel program

PP is a program which
allows computational
environment to do some
operations in parallel

/

+/- *

sqrt-b

-

2 a

*

b b

*

*4

a c

Instruction parallelism

Cache

Registers

ALU1 ALU2

Instruction parallelism

IF – Fetch instruction
ID – decode instruction
EX – Execute instruction
MEM – Memory access
WB – Write result back (mem/reg)

Vector operations

MMX, 3DNow, SSE, SSE2

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X1+Y1 X2+Y2 X3+Y3 X4+Y4

+

=

Data loading

LD C LD C LD C

LD C LD C LD C

Gain
Calc. 2 times faster

Data loading

LD C LD C LD C
LD C LD C LD C

LD C LD C LD C
LD C LD C LD C

LD C LD C LD C

Multi-core

Parallel program is a system of
communicated processes

Types of parallelism

● Bit-level parallelism
● Instruction level parallelism
● Data parallelism
● Task parallelism

Bit-level parallelism

Increasing the word size reduces the number of instructions the
processor must execute in order to perform an operation on

variables whose sizes are greater than the length of the word.

Historically, 4-bit microprocessors were replaced with 8-bit,
then 16-bit, then 32-bit microprocessors. This trend generally

came to an end with the introduction of 32-bit processors, which
has been a standard in general purpose computing for two

decades. Only recently, with the advent of x86-64 architectures,
have 64-bit processors become commonplace.

Data parallelism

There is a set of data DD.
For each X

i
 from DD do F(X

i
)

DD could be distributed over computational nodes
DD = DD' ᑌ DD'', DD' ᑎ DD'' = 0

Process DD' on CPU1, process DD'' on CPU2 in
parallel

D

D’ D’’

CPU1
CPU2

Task parallelism

Task parallelism is the characteristic of a parallel
program that "entirely different calculations can
be performed on either the same or different sets
of data". This contrasts with data parallelism,
where the same calculation is performed on the
same or different sets of data. Task parallelism
does not usually scale with the size of a problem.

Flinn's taxonomy

Single data SISD MISD

Multiple data SIMD MIMD

Single
instruction

Multiple
instruction

Flinn's taxonomy
SISD - sequential PC, which performs operations
one by one

SIMD – vector computers, vector operations like
SSE, MMX.

MISD – strange type. It's hardly possible to find
any PC with this type of CPUs. One can suggest
to look at pipeline as MISD systems.

MIMD – PC (set of PCs) which can execute
several different programs at the same time.

Classes of parallel computers
● Multicore computing
● Symmetric multiprocessing
● Distributed computing
● Cluster computing
● Massive parallel processing
● Grid computing

Specialized parallel computers
● Reconfigurable computing with field-

programmable gate arrays
● GPGPU with graphics processing units
● Application-specific integrated circuits
● Vector processors

Specificity of parallel programs

● Nondeterminism
● Errors
– Deadlocks
– Race conditions

● Scalability

Nondetermenism
Nondeterminism is a specificity of parallel
program which tells that sometimes it is

impossible to say which function/process
start or finish its execution first.

Time

A B

C

Time

A B

C

Time

A B

C

Time

A B

C

Errors. Race condition

// thread 1
int k;
for(k=0, i=100; i< 200; i++){

k = (k + arr[i])%0xFF;
}
sum = (sum + k)%0xFF;

// thread 0
int k;
for(k=0, i=0; i< 100; i++){

k = (k + arr[i])%0xFF;
}
sum = (sum + k)%0xFF;

Program is executed on shared memory system.
sum is shared variable

Synchronization required

Errors. Deadlock

Process P1 locks resource B, at
the same time process P2 locks

resource A. If P1 will lock resource
A and P2 will try to lock resource

B, they will blocked forever.

Deadlock could turn into livelock,
which is more unpleasant than its

counterpart.

A B

P1 P2

Scalability

As the number of computational units increase,
program should run faster. We add more

computational power therefore we can expect
performance to growth.

 Ability of the program to follow this rule is
program's scalability.

Level of scalability is the number of CPUs
(computational nodes) at which addition of extra
CPUs gain no reasonable performance growth

 Gene Amdahl's law

N – number of CPUs
P – part of the program, that could be paralleled

Advantages/disadvantages of
shared and distributed memory

systems

+ -

Easy to program

Difficult to program

Shared
memory
systems

High cost
Low scalability

Distributed
memory
systems

High scalability
Low cost

Development environment

● Compiler directives
● HPF
● OpenMP
● MPI
● POSIX Threads
● etc.

Approaches to PP development
Questions to be answered:
1. Worth this program to be parallelized?
2. Why do I want to parallel this program? Because of
time/memory limitation.
3. Which part of the program could be parallelized?
4. Which type of computational environment is suitable for
this task?
5. What type of computer do we have (can use) now/in
future?
6. How many working hours do I wont to spend
parallelizing the code?

Higher degree of parallelism and optimization is higher
cost of the final program.

Self-test questions

●What is parallel program?
●Name several computer systems and
order it according to Flinn's taxonomy
●What is the difference between data and
task parallelism?
●Is it possible to develop parallel program
for calculating Fibonacci's numbers?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

