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Randomly connected networks of Boolean logic functions of
fixed in-degree (“Kauffman Nets”) are analyzed using an
annealed approximation. While these nets originated as
models of genetic regulatory networks, the conclusions and
observations obtained by treating them as a complex type of spin
system are relevant beyond the purview of genetics and have
applications in the construction and control of certain complex
dynamical systems. Preliminary results are presented on the
properties of nets incorporating bias and redundancy.





Section 1 Introduction to NK Boolean Nets

NK Boolean Nets were first put forth as a model of genetic regulatory systems
by Stuart Kauffman in 1969[7, 8, 9, 10], based on the biochemically founded
inspiration that genes, through their expression of proteins, can affect other genes
by inhibiting or activating their expression. A Nk Boolean Net refers to N nodes
and k inputs per node. Each node is characterized by a logical function of its
inputs such as A nand (B xor C). This logical function works dynamically to
compute the state of the node at the next time step as a function of the that node’s
input values of the previous time step. Thus a Boolean net is a discrete dynamical
system. A Boolean Net differs from a Boolean expression in that it has N output
values instead of one. A random Boolean Net has a randomly chosen topology
(usually with duplicated links avoided) and randomly chosen Boolean functions
at each node.

The variety of nets which can be constructed in this manner is very large.
If there are k inputs per node, the rule table specifying the output for any given
combination of binary inputs will be of size 2k. Each one of these slots can be
filled with either a 0 or a 1. Thus each node can have 22

k

possible functions. N
raised to this number is therefore the number of possible functional realizations
of a Nk net. The number of possible topologies is also large. Since each of
the k inputs of each node is linked to some other node, there are

�
N

K

�
ways to

distribute the “other ends” of the inputs. There are thus N raised to this power
ways of configuring the entire net. Therefore the maximum possible number of
ways to construct a Nk net is the product of topological realizations and logical
realizations, given by

N
(N
K
)
N

2
2
K

a very large number indeed.

In actuality, the number of unique realizations of a net is smaller than this,
as Boolean nets have a number of symmetries (such as the exchange of zeroes
and ones) which reduce the size of the space. Another bound on the functional
number of nets is given by the maximum number of different dynamics which
can be deterministically generated. The state of the net at a given time-slice is
given by the values at each of the N nodes. There are 2N such states, the number
of different binary numbers of N bits. Since the dynamics are deterministic, the
longest non-repeating path through state space can be at most 2N steps long. All
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realizable dynamical trajectories are contained in the power set of the state space,
which has 22

N

elements.

The conclusion which can be readily drawn from the above argument is that
the number of realizations becomes statistically significant very quickly as a
function of increasing N . This invites one to apply the methods of statistical
analysis to understand characteristic behaviors of random Boolean nets.

Section 2 Statistics of Boolean Nets

A continuous deterministic dynamical system can be characterized by being
in an ordered or chaotic regime by a number of means. With Boolean nets
we are dealing with a discrete state space and hence the definition of chaos is
different than that of a continuous system. Given enough time, the system must
return to a state it has visited before, a constraint which continuous systems are
not subject to. In addition, we cannot perturb a Boolean net infinitesimally and
observe whether this perturbation grows or not, as we have to flip a discrete
bit. Given these caveats, it is still possible to ask questions about the stability
of Boolean nets. Derrida and Pomeau[4] defined a process in which one takes
two nets whose initial conditions differ in N (1 � q) bits (the Hamming distance
between the nets), where N is the size of the net and q 2 [0; 1] is the amount of
overlap in initial conditions. Each net is then computed forward by one step, and
the change in Hamming distance is observed. If differences tend to grow, this
is a discrete signature of chaos, and if distances converge, this is a signature of
order.[4, 5, 6] This is analogous to the computation of the Lyapunov exponent
in continuous systems.

Consider an ensemble of nodes with k inputs per node. Derrida and Pomeau
use the annealed approximation in which the connections and node rules are
randomly resampled at each time step and are hence uncorrelated and can be
treated probabilistically. Each node is therefore statistically identical to every
other node. If we prepare two nets of the same topology and rules but different
initial values (overlapping on a proportion q of the sites) and then propagate them
forwards one time step (redrawing the connections randomly as we do so), we
can write down an expression for the iterated overlap

q(t+ 1) = qK(t) +
1

2

�
1 � qK(t)

�
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the first term is due to the deterministic contribution to overlap, given by the
probability that all k inputs to a node overlap in both cases, hence they all have
the same inputs, hence they generate the same output. The second term is from
random contributions to overlap, and the prefactor assumes that half of the time
the two nets generate the same output value at the node under consideration. The
family of curves thus generated for different k is shown below:

0.2 0.4 0.6 0.8 1
Hamming(t)

Derrida Curves

0.2

0.4

0.6

0.8

Hamming(t’)
H(t’)=H(t)

k = 1

k = 2

k = 3

k = 4

k = 5

The line marked H(t) = H(t0) is the dividing line between order and chaos.
It is clear that k = 2 lies directly on this line, and that higher k is in the chaotic
regime and that lower k is in the ordered regime.

Section 3 Biased Nets

It will be essential for the conclusions of this paper to consider the dynamics
of biased nets. A biased net is one in which the rule tables have a preponderance
of zeroes or ones. Since the dynamics are unchanged under the operation of
inversion (swapping zeroes for ones), we are free to call the proportion of ones
in the rule table p1. The overlap calculation follows the calculation above, except
that the contribution from the random term is different[4]. If a node has one
or more non-overlapping inputs, the contribution to the overlap at the next time
step is the sum of the probabilities of both node configurations having a zero
and both configurations having a one, giving a prefactor to the random term of
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�q = p
2

1
+ (1 � p1)

2. This reduces to 1=2 for p1 = 1=2, reproducing our earlier
result. We can now calculate the critical value of � for which the Derrida curve
sits on the order/chaos border. If we write the iterated overlap equation in terms
of the Hamming distance x = 1 � q we have

x
0 = ��(1 � x)

K
+ �

where we have defined � = 1 �
h
p
2 + (1� p)

2

i
as the ‘bias function’. The first

and second derivatives yield

@x
0

@x
= K�(1� x)

K�1

and
@
2
x
0

@x2
= �K(K � 1)�(1� x)K�2

If we observe that the second derivative is negative everywhere on the interval
[0; 1] for K � 1, we can solve for the order/chaos border by setting the first
derivative equal to one at the origin, yielding

� =
1

K

as the condition for the onset of discrete chaos. It is now possible to conclude
that we can drive a net into orderly behavior by inducing bias in the rule table.
This is intuitively reasonable when one considers the limiting case in which the
rule table is all zeroes or all ones. In such a case, any two states converge on
the same state in one step regardless of the value of k, driving the net strongly
into the ordered regime. The equation for the bias away from p1 = p0 = 1=2

can be solved, yielding

p1;0(K) =
1�

p
1 � 2=K

2

This function displays the expected symmetry about p1 = 1=2 and is illustrated
below.
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The above analysis can be extended to mixed nets, nets which have nodes
of differing input degree. Consider a weight vector ~l, where

P
i

li = 1. and the

weight associated with in-degree K is lK . The Derrida curve for such a mixed
net is a weighted sum of the Derrida curve for individual K , and is given by

D
�
~l � ~K

�
=

X

K

lKD(K) = �� �
X

K

lK(1� x)
K

which is in general a polynomial of degree Kmax with arbitrarily adjustable
coefficients. If we take the first derivative at x = 0, however, we obtain

@x0

@x
jx=0 = �

X
lKK = �hKi

,giving the same order/chaos condition for the expectation value of K as we had
for a single value of K . This is a valid condition if the second derivative:

@2x0

@x2
= ��

X

K

lKK(K � 1)(1� x)
K�2

is everywhere negative, which is indeed so, as lK is positive for all K .

Section 4 Perturbative Approach to Stability Analysis

One can also define the order/chaos boundary as the locus of parameter values
for which a ‘test’ bit flip causes an expectation value of one more bit flip to occur.
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Less than this critical value causes perturbations to die out, greater than this value
causes the disturbance to grow to a size on the order of the size of the network.
The following derivation closely parallels[11]. If we consider the act of flipping
a bit, we must then calculate the expected number of other bits that will flip. If
there are k inputs per node and the net is randomly wired, we can expect the
probability of the out-degree m to be Poisson distributed when N � K:

p(K;m) =
e�KK

m!

For a given out-degree m, we can calculate the expectation value of the number
of bits flipped as follows

hflips=mi =
mX
i=0

iPm(i; �) =
mX
i=0

i�i
�
1 � �i

�m�i�m
i

�

where � is the same as defined above and Pm(i; �) is the probability of flipping
i out of m spins given bias function �. If we convolve the above equation with
the Poisson distribution of outputs, we have for the overall expectation value of
spin flips

hflipsi =
1X
i=0

e�K
K

i!

iX
j=0

j�j(1� �)i�j

The j = 0 term does not contribute, so the second summation can be rewritten as

�i

iX
j=1

�j�1(1 � �)i�j
�
i� 1

j � 1

�
= �i

since the sum is equal to one (binomial theorem). The flip expectation value
now reduces to

hflipsi = �

1X
i=0

e�K
iK

i!
= �Ke�K

1X
i=1

K

(i� 1)!
= �K

Thus we expect the phase transition to occur at �hKi = 1, the same result as
before.
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Section 5 Redundancy and Canalization

It has been widely observed in experimentally studied genetic networks that
the Boolean nets which most closely approximate them have a property called
canalization. This is the property that constrains the rule table such that one value
of one input is sufficient to uniquely determine the output value of the entire node,
regardless of the values of the other inputs. It is possible to have canalization on
more than one input, a simple example of this being the or function. If so, this
can be perceived as a kind of ‘fail-safe’ design in which redundancies exist to
ensure that the desired output of the regulated node can be generated by more than
a single combination of inputs. Canalization would be a natural way to design in
robustness against noise and uncertainty. As such it is of general interest to the
study of the reliability of large switching networks.

To develop some intuition regarding the behavior of statistical ensembles
of canalizing nodes, consider the reduction of degrees of freedom caused by
introducing redundancies into the system. This reduces the space of possible
behaviors of the Boolean net, and therefore should drive nets into the ordered
regime. We can study this effect analytically through the following means:
Calculate the effect that introducing canalization has on the statistical structure of
rule tables, and then observe the effect that this has on the bias function �. The
change in � induced by the introduction of canalization can then be correlated to
a change in position relative to the order/chaos axis on the Derrida plot. Since
the Derrida plot is only a measure of “differential” (single-step) dynamics, certain
global properties of the network unique to canalizing networks might be missed,
but it serves as a useful first approximation.

To understand the effect of canalization on rule-table bias, consider the
example of a node which canalyzes on two of its three inputs. Its rule table
might look like the following (a number of permutations are possible) The output

Input 1 Input 2 Input 3 Output

0 0 0 A

0 0 1 A

0 1 0 A

0 1 1 A

1 0 0 *
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Input 1 Input 2 Input 3 Output

1 0 1 *

1 1 0 A

1 1 1 A

‘A’ signifies either a zero or a one. A ‘*’ signifies ‘don’t care’, although this
is somewhat constrained because we might accidentally canalyze on more than
two inputs if we choose these values injudiciously. As the function is written, it
canalyzes on the first input when that input has value zero and the second input
when it has value one. As can be seen, a minimum of six out of eight output
values have to be the same to canalyze on two inputs out of three. The rule table
is now biased away from � = 1=2. In general, if we wish to canalyze on c inputs,

p(0 or 1) > 1� 1=2
c

where the subscript of p is chosen such that it is the output value of the canalyzing
inputs. If we assume that the entries marked by ‘*’ are filled out with p0;1 = 0:5

(not exactly correct, but close), we can approximate the expected bias as

p0;1 � 1� 1=2
c+1

This gives a bias function �(c) = 1=2
c
�1=2

2c+1. Since c appears in the exponent
of the bias function and the condition for the order/chaos boundary is � = 1=k,
we can conclude that there is a nonlinear dependence of the order/chaos boundary
condition on the amount of canalization. If we are dealing with a net with mixed
canalization, we replace � with

h�i =

kX

c=0

p(c)�(c)

where
P

p(c) = 1. In order to know where we are in the order/chaos plane,
it is therefore necessary to know the distribution of canalization, not just the
proportion of inputs which are canalizing. This implies that there exist more
and less economical ways to build robustness into a highly connected switching
network.
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Section 6 Simulation Results

In order to understand the characteristics of Boolean nets more thoroughly,
we have simulated their behavior computationally. The question arises as to
what is simulating what, as digital computers are essentially large configurable
Boolean circuits. Boolean nets can be characterized by many different parameters
in addition to the Derrida curve and bit—flip perturbation dynamics discussed
above. Since they are discrete dynamical systems, they must eventually revisit a
state they’ve encountered before, thus engendering a loop or attractor, which can
very in length from one (a fixed point) to 2N . These attractors can be characterized
by their size (what proportion of initial states create dynamics which terminate
on this attractor), by their multiplicity per net, and by the length of the transients
which occur before arriving at the attractors.

In his book, The Origins of Order[10], Stuart Kauffman discusses early
simulation work on the dynamics of Boolean nets. Kauffman observed a sharply-
defined qualitative and quantitative change in behavior between nets in the ordered
and chaotic regimes. ‘Chaotic’ nets were characterized by an exponential increase
in the number and length of attractors as a function of the size of the net, whereas
‘ordered’ nets had a weak (logarithmic) or nonexistent dependence of numbers
and lengths of attractors on net size. . Chaotic behavior was observed for k > 2,
and ordered behavior was observed for k < 2. Nets of k = 2 showed power-
law behavior, with both lengths and numbers of attractors scaling as

p
N . This

work was taken up again much more recently by Bhattacharjya and Liang[3], who
studied the behavior of biased nets along the order/chaos boundary for a variety of
k values utilizing much greater computational resources, seeking to characterize
this boundary as a well-defined phase transition in the physics sense. This was
inspired by theoretical and computational work of Bastolla and Parisi [1, 2] who
showed that the entire order/chaos boundary was, modulo certain assumptions, a
member of a single universaility class characterized by scaling laws.

Canalizing networks display power-law (square-root) behavior of attractor
numbers and less than square-root power-law behavior of attractor lengths across
a spectrum of canalization values, not just at the canalization values which cause
the bias variable � to take on a value which puts the net at the phase transition in
the Derrida sense. It has not yet been shown if this can be described in terms of a
phase transition displaying analytically derivable scaling exponents, though work
is in progress on this point. Even though a given choice of canalization implies a
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certain �, the reverse is not the case. Canalizing rules are a very particular subset
of rules, and form an exponentially decaying fraction of all possible rules as a
function of increasing k. Thus we cannot expect that all of the conclusions which
apply to biased networks should necessarily apply to canalizing networks.

Section 7 Discussion

Even though logical networks have been a subject of study in electrical engi-
neering for many decades, very little emphasis has been placed on characterizing
their behaviors statistically. This is because the primary interest in constructing
networks has been that of reverse engineering—given a desired output, construct
the minimal circuit network which will give one that output. Interest in the statis-
tics of networks has come more recently and from a biological direction. Modeling
genetic regulatory networks with Boolean nets has been a fruitful approach to un-
derstanding genetic function. As soon as one begins to discuss genetics, issues of
evolution, selection, and randomness come to the fore. Genetics deals with the
evolution of populations and is thus inherently statistical. One is then led to ask
questions about the characteristics of genetic regulatory networks which would be
evolved by natural selection. This is also relevant to adaptive programming and
control theory, as one wishes to “evolve” a computer program or, more specifi-
cally, a logical circuit which produces the desired output. Many problems are too
complex to arrive at by deterministic means the minimal circuit which produces
the desired result, hence the question becomes “Are there many more non-minimal
circuits which will give the desired result?” If one does not require the minimal
circuit, but instead wishes to select for higher robustness or some other charac-
teristic, there are many instances in which the computational complexity required
to construct the circuit becomes much less, since one is attempting to arrive at a
family of logical realizations rather than a unique solution.

The implications of universal behavior near the Derrida boundary and the
observation that canalizing networks cause this characteristic behavior to appear
for a large spectrum of �(c) implies that canalizing networks are robust. This
means that a canalizing network will display ‘phase-transition’ type behavior even
if the amount of canalization varies across a substantial spectrum, hence individual
nodes can be modified without changing the length or number of attractors. This
makes canalizing networks a good candidate for control networks in the presence
of noise or misinformation. This is not surprising, given early indications that
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nature uses these networks in the architecture of genetic regulatory networks
which control the development and maintenance of the most complex systems
we know, namely living things. Genes must accomplish their tasks reliably in
the presence of a noisy, complex environment. Boolean nets are an attempt at
a digital realization of genetic control circuitry, and have many properties which
would make them useful for complex control of man-made systems. They are
parallel, networked, and display higher-order emergent organization, namely the
structure due to attractors.
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