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Fitness distance correlation (FDC) has been of-
fered as a summary statistic with apparent suc-
cess in predicting the performance of genetic al-
gorithms for global optimization. Here, a coun-
terexample to Hamming-distance based FDC is
examined for what it reveals about how GAs
work. The counterexample is a fitness func-
tion that is ‘GA-easy’ for global optimization,
but which shows no relationship between fitness
and Hamming distance from the global optimum.
Fitness is a function that declines with the number
of switches between 0 and 1 along the bitstring.
The test function is ‘GA-easy’, in that a GA using
only single-point crossover can find the global op-
timum with a sample on the order of 10 � 3 to 10 � 9

of the points in the search space, an efficiency
which increases with the size of the search space.
This result confirms the suspicion that predictors
for genetic algorithm performance are vulnerable
if they are based on arbitrary properties of the
search space, and not the actual dynamics of the
genetic algorithm. The test function’s solvability
by a GA is accurately predicted, however, by an-
other property—its evolvability, the probability
that the genetic operator produces offspring that
are fitter than their parents. It is also accurately
predicted by FDC that uses a distance measure
defined by the crossover operator itself, instead
of Hamming distance. Mutation-based distance
measures are also investigated, and are found to
predict the GA’s performance when mutation is
the only genetic operator acting. A comparison
is made between Hamming-distance based FDC
analysis, crossover-distance based FDC analysis,
evolvability analysis, and other methods of pre-
dicting GA performance.

1 Introduction

A still unsolved problem in evolutionary computation is to
understand when a genetic algorithm (GA) will be effective
at finding the global optimum of a search space. To under-
stand, of course, means more than simply to run the GA
in question and see how well it finds the global optimum.
Rather, it means finding properties of the GA:� that predict its behavior and require less computation

than the actual search, or� which are invertible—i.e. which can be used to con-
struct a GA that has good performance.

Jones (1995) and Jones and Forrest (1995) have proposed
‘fitness distance correlation’ (FDC) as a candidate prop-
erty for predicting the performance of a genetic algorithm
in global optimization. In this approach, the Hamming
distances between sets of bitstrings and the global opti-
mum bitstring are compared with their fitness. Large nega-
tive correlations between Hamming distance and fitness are
taken to be indicators that the system is easy to optimize
with a GA. Large positive correlations indicate the problem
is ‘misleading’ and selection will guide the population away
from the global maximum. Near-zero correlations indicate
that the GA does not have guidance toward or away from
the optimum, and thus faces the same difficulties as random
search. However, when the correlation coefficient is near
zero, Jones finds that it is too simplistic a summary statistic
and can be fooled. This necessitates a closer examination
of the relation between fitness and distance, through the use
of a scatter plot of fitness versus Hamming distance.

Jones states that FDC (comprising the use of the correlation
coefficient and the fitness-distance scatter plot) is able to:

1. predict GA behavior on a number of well-studied prob-
lems,

2. illuminate problems whose behavior had been seen as
surprising using other analytical frameworks, and

3. account for the performance of different problem en-
codings and representations.
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Jones notes that this is both ‘encouraging and alarming’—
encouraging since FDC appears to work, but alarming since
‘distance’ is defined without reference to the genetic oper-
ators, the representation of the search space, or any of the
dynamics of the genetic algorithm (Jones, 1995). Jones rec-
ommends that a stronger predictor of GA optimization per-
formance would be FDC analysis using a distance measure
based on the genetic operators themselves. Nevertheless,
Hamming-distance based FDC is the source of the results
Jones reports, so it is these results that we must consider.

With FDC we have a method of analysis that appears to
predict the performance of genetic algorithms even though
it does not directly incorporate any part of the GA dynamics.
What are the implications of such a result? We can only
surmise that either Hamming distance is in fact related to
GA dynamics, or that this relationship fortuitously holds
among the test cases Jones examined, in which case there
may be counterexamples for which it does not hold.

Addressing this question, Jones notes that Hamming dis-
tance is strongly related to the mutation operator in classi-
cal bitstring genetic algorithms. The number of times that
the mutation operator must be applied to transform a given
string to the global optimum is monotonic with Hamming
distance. However, it has been classically argued that the
main role of mutation in genetic algorithms is to prevent
premature convergence, and that recombination is the op-
erator most important for GA performance. Therefore, one
interpretation of Jones’s results would be that mutation is
a much more important determinant of GA performance,
either generally or in the specific examples he examined.

Another interpretation is that there is a deep relationship
between Hamming distance and the recombination opera-
tor. Jones does not discuss this possibility. Recombination
does not fit easily into an FDC framework, because it in-
volves pairs of bitstrings, so distance cannot be defined
simply between individual bitstrings. And the formation
of pairs of bitstrings on which recombination operates de-
pends on the distribution of bitstrings at each generation
of the GA; recombination can thus be considered to be
a frequency-dependent operator. Finally, recombination,
including single-point crossover, can create offspring that
are a great Hamming distance from their parents and from
each other. Thus recombination would seem to destroy any
relationship between Hamming distance and GA dynamics.

Even in the absence of a dynamical foundation for FDC,
several investigators have been applying it to new domains
(e.g see Collard and Escazut, 1996). But the apparent suc-
cess of FDC on the wide suite of fitness functions remains
an unanswered question.

To approach this problem, it should be noted that FDC
analysis consists of several conjectures:

1. If there is a large positive fitness distance correlation
( ��� 0 � 15), then the problem is misleading and the GA

will be led away from the global optimum;

2. If there is a large negative fitness distance correlation
( ���
	 0 � 15), then the problem is straightforward and
the GA will find the global optimum with relatively
good performance;

3. If the fitness distance correlation is near zero ( 	 0 � 15 ���� 0 � 15), the prediction is indeterminate:

(a) If the fitness-distance scatter plot shows no rela-
tionship between fitness and Hamming distance,
the problem is GA-difficult;

(b) certain structures that appear in the scatter plot
will indicate that the problem is straightforward,
or misleading, as the case may be.

This paper focuses specifically on 3(a). I leave to another
study the problem of whether counterexamples to FDC Con-
jectures 1. or 2. can be found—i.e a GA-hard problem
with large negative FDC, or a GA-easy problem with large
positive FDC. Here, I produce a counterexample to 3(a)
consisting of a GA-easy fitness function that shows no re-
lationship between Hamming distance and fitness. To pro-
duce this counterexample, I follow the suggestion of Jones
and use the crossover operator itself to define ‘distance’.
This counterexample demonstrates that arbitrary heuristics
about search spaces are vulnerable when they do not incor-
porate the mechanisms of search. Other predictors of GA
optimization performance that do incorporate the GA dy-
namics will be examined, and these are found to accurately
predict GA performance with this fitness function.

2 Constructing a Counterexample

The key to constructing a counterexample to FDC is to
devise a ‘distance’ measure in terms of the recombination
operator. Single-point crossover is examined here. Single-
point crossover can transform any pair of complementary
bitstrings into any other pair of complementary bitstrings
through its repeated application. The number of crossovers
needed to transform a complementary pair into the global
optimum and its complement can thus be used to define
a ‘crossover distance’. To make a fitness function that is
straightforward to optimize, we would like each bitstring
to have a path to the global optimum (through repeated
application of crossover) in which fitness is monotonically
increasing. The expectation is that this will allow the ge-
netic algorithm to produce the next fittest bitstring along
this path using crossover, amplify this bitstring through se-
lection, and subsequently produce the next fittest bitstring
through crossover, and so forth. The number of crossovers
it takes to reach the global optimum can serve as the ‘dis-
tance’ measure. With this definition of distance, the fitness
function should produce a large negative fitness distance
correlation coefficient.

How can such a fitness function be defined? A possibility is
suggested by examining Figure 1, which shows a sequence
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Figure 1: A path from a set of complementary bitstrings to
the optimal bitstring via single-point crossover. The number
of crossover events can be taken as the ‘crossover distance’
between bitstrings.

of crossover events on complementary bitstrings that pro-
duce a path to the optimal bitstring (set to be the bitstring
of all 1s).

We notice that as one moves farther from the optimum along
this path, the number of discontinuities between 0 and 1
increases by one with each step. So, we can let the number
of discontinuities be the candidate measure of distance.

This definition of distance is somewhat artificial in terms of
actual GA dynamics, because crossover on complementary
pairs of bitstrings will be a relatively infrequent event in
the population. But all that is required here is that this
‘distance’ will be sufficiently related to the GA dynamics
that it can be used to produce a GA-easy fitness function
that is a counterexample to FDC Conjecture 3(a).

In order for selection to guide the search along the path
shown in Figure 1, the fitnesses need to be monotonically
increasing along the path toward the optimum. A fitness
function which decreases with the number of discontinuities
between 0s and 1s will have that property. Furthermore, this
fitness function would have these important properties:

1. Symmetry with respect to bit value, that is �������������	���� , where �������! 0 " 1 #%$ is a bitstring of
length & , and ������ is the fitness of � . Thus the fitness
distance correlation coefficient will be zero.

2. The additive fitness components for individual bits will
be zero.

Regarding property 1, the fitness distance correlation coef-
ficient is: �'�)(+*-,+.0/1*�/2,
where (+*-,3� Cov 4 ��5�6�7"98:����" ˆ�;�=< , /1*>� Var 4 ������=< 1 ? 2,/2,@� Var 4 8A�5�6" ˆ�6�=< 1 ? 2, 8A�5��" ˆ�;� is the Hamming dis-
tance, ˆ�B� � is the global optimum, and the vari-
ances and covariances are taken over a the entire search
space. Cov 4 ��5���C"�8A�5��" ˆ�6�=<+� 0 by the symmetry condi-

tions ��5���D�E����F	G��� and 8A�5��" ˆ�;�H	)IJ4 8:���;" ˆ�;�K<L�IJ4 8:���;" ˆ�;�=<M	N8:�9�'	:�O" ˆ�;� , hence �P� 0.

Regarding property 2, the additive non-epistatic fitness
component of any single bit can be derived from a de-
composition of the fitness function into epistatic interac-
tions between bits (Cockerham, 1954; Reeves and Wright,
1995). Bit-value symmetry immediately implies that all
additive non-epistatic effects (i.e. IJ4 ���Q��R�R�SQUT2V;QW�R�X�YQ0�Z	IJ4 ��9Q��R�R�SQ0�K< ) will be zero, and all the non-zero fitness com-
ponents will come from epistatic interactions between bits.
In other words, at any bit position, a 0 bit will have the same
average fitness as a 1 bit, and only schemata with more than
one defining bit will have an average fitness different from
the average for the entire search space.

Since the FDC coefficient is zero for this test function, the
Hamming distance FDC analysis would predict that the
fitness function will be hard for a GA to optimize if no spe-
cial structure is revealed by the fitness-distance scatter plot.
Therefore, as a counterexample, the fitness function needs
to be shown to be GA-easy with no relationship between
Hamming distance and fitness.

Jones (1995) finds cases that are GA-easy but which have a
near zero FDC. In these cases, an examination of a scatter
plot of fitness versus distance reveals structure in the fitness
landscape that are consistent with it being GA-easy. For
example, in the Liepins and Vose transformation (Liepins
and Vose, 1991), the FDC coefficient is zero because half
of the search space has an FDC value of 1, while the other
half has -1, and this is revealed by an ‘X’ structure in the
FD scatter plot.

A requirement for this counterexample, therefore, is that
the FD scatter plot reveal no discernible structure between
fitness and Hamming distance. The following formulation
is used to achieve this.

2.1 The test function

First I will define the number of discontinuities between 0s
and 1s in the bitstrings, �[�N 0 " 1 #%$ , where & is the length
of the bitstring:

\ �5�]��� $Z� 1^ _
` 1

a T
_
	:T

_cb
1
a �:4 0 "d&A	 1 <�"

The Hamming distance, 8A�5�;"de]� between two bitstrings, �
and e , is

8:����"de��]� $^ _
` 1

a T
_
	:f
_ a �g4 0 "h&W<��

The function
\ �5�]� could be used directly in a fitness func-

tion such as i����]���kjl�1m ,6n ��o �3� 0 " 1 < . This is of the
same form as the fitness function used by Prügel-Bennett
and Shapiro (1994) in a GA analysis that uses a simple spin
glass energy model.
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However, for our purpose,
\ ���]� can not be used directly

for the fitness function because it displays a strong re-
lationship with Hamming distance, contrary to what is
sought. The range of

\ ����� is constrained by
\ �5�]�J�

2 min 4 8:���;"R�p�7"98A�5�;"dq1�=< , where � is the optimum bitstring.
For example, any bitstring that has a single 1 and the rest of
the bits 0, or vice versa, can have at most 2 discontinuities,
and must have at least one. Numerical analysis shows that
the expected number of discontinuities over all bitstrings a
given distance r from the optimum is a simple function ofr : ID4 \ �5��� a 8A�5�]����rF<U� 2

�5&J	srJ��r& " (1)

where for simplicity I will write 8:����"X�t����8A�5�]� .
I will use equation 1 to normalize

\ �5�]� , and produce the
following as the fitness function:

i��5�]�W� max 4 1 	 \ �5�W��&
2 4 &A	srg�5���K<prg�5�6� " 0 <�" (2)

with one modification: in order that there be only one global
maximum, I reduce the fitness of the all 0s bitstring to:i��5q1�]� 1 	 1

2 n $Z� 2 o . This will perturb the FDC coefficient

to a still insignificant negative value, on the order of 	 2 �1$ .

What we expect from a genetic algorithm using crossover
with this fitness function is that as evolution proceeds, bit-
strings with longer and longer sections of contiguous 1s
or contiguous 0s should predominate, and these contiguous
segments should be recombined to form even longer seg-
ments. Finally, a bitstring with all 1s, the global optimum,
should be produced by the population.

3 Results

To establish this counterexample it now remains to be shown
that:

1. the test fitness function displays no relationship be-
tween fitness and Hamming distance from the opti-
mum, and

2. the test function is easy for a genetic algorithm to
optimize.

3.1 Does the test function show a fitness distance
relationship?

The relationship between Hamming distance and fitness
for the test function is shown in the fitness-distance scatter
plot, Figure 2. The first graph in the figure shows randomly
sampled bitstrings, while the second shows the bitstrings
that are produced during a run of the genetic algorithm (see
section 3.2 for GA implementation details).

Although the distribution of points is not uniform through-
out the graph, it is difficult to discern any structure in which
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Figure 2: A scatter plot of the distribution of fitnesses vs.
Hamming distance for the test function. &u� 64 bits. (A)
40,000 randomly sampled bitstrings. (B) 500,000 samples
taken during a GA run. The global optimum is shown at
(0,1).
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Table 1: Performance of the genetic algorithm on the test
function. Columns are: the length of the bitstrings, the pop-
ulation size, the maximum number of fitness evaluations,
the mean number of fitness evaluations among runs that
found the global optimum, the portion of runs that found
the global optimum, and the portion of the search space that
was sampled in successful runs, which is approximated by
103 v 53 � 0 v 25 $ .

Bits Pop Evals: Success Portion
Max Mean

24 2K 300K 56.3K 100% 3 w 10 � 3

32 3K 300K 164K 93% 4 w 10 � 5

50 10K 2,000K 106 41% 10 � 9

Hamming distance could be a guide to the GA search. In
particular, there are no points in the vicinity of the global
optimum, � 0 " 1 � . The next-fittest points are those of inter-
mediate Hamming distance 8A�5�]����&O. 2.

3.2 Is the test function GA-Easy?

The global optimum of the test function can be fairly easily
found by a genetic algorithm. Results of some numerical
simulations are given in Table 1. Additional simulations
could refine these numbers, but they are adequate for the
purposes addressed here.

Each of the entries are the result of 200 runs of the genetic
algorithm. The GA is a ‘simple genetic algorithm’ that uses
roulette wheel selection (so the fitness coefficients were in
fact the values of the fitness function), discrete genera-
tions, random mating, and 100% probability of single-point
crossover in the creation of offspring. No mutation was
used in order to present a clear picture about the crossover
operator.

As can be seen, as the size of the search space is increased,
the percentage of runs that find the global optimum (Success
%) decreases, and the mean number of bitstrings that need
to be evaluated also increases. The reason that some runs
fail to find the global optimum is premature convergence,
in which one or more regions of the bitstring lose their
polymorphism, with either 1s or 0s going toward fixation.
However, as the bitstrings get longer a dramatic decrease
can be seen in the portion of the search space that needs to
be searched to find the global optimum. Over this range of
bitstring lengths, the portion of the search space is closely
approximated by the expression 103 v 53 � 0 v 25 $ .

Although there is no standard definition for ‘GA-easy’, it is
reasonable to use random search as the control for compar-
ison. In random search, the expected number of points that
need to be evaluated to sample the global optimum is half
the size of the search space. The proportions of the search
space sampled to find the global optimum, as shown in Ta-

ble 1, are orders of magnitude smaller than that for random
search, which should provide a satisfactory criterion for the
test function being GA-easy.

In summary, this fitness function meets both requirements
for it to be a counterexample to FDC Conjecture 3(a): the
fitness function is GA-easy, and it shows no relationship to
Hamming distance from the global optimum.

3.3 What predictors would show the test function to
be GA-Easy?

FDC analysis using Hamming distance has been found to
wrongly predict the difficulty of optimizing the test func-
tion studied here. But the question remains, what kinds
of analysis would be better predictors? There are several
candidates in the literature:

1. parent-offspring correlation, xzy5{ (Weinberger, 1990;
Manderick et al., 1991);

2. evolvability (Rechenberg, 1973; Beyer, 1993; Al-
tenberg, 1995);

3. simulated dynamics (Altenberg, 1995; Grefenstette,
1995);

4. analysis of variance for schemata (Radcliffe and Surry,
1995; Reeves and Wright, 1995); and

5. fitness distance correlation where distance is derived
from the genetic operators (Jones, 1995; Jones and
Forrest (1995)).

Some brief remarks on several of these methods will be
made.

3.3.1 Parent-Offspring Correlation

Parent-offspring correlation analysis would predict that the
test function presented here is GA-easy, because xzyK{ using
crossover will be high in this case. This is because

a \ ���]�}|\ �5e��+	�4 \ �5~;�+| \ ���2�=< a � 2, where ~ and � are the
products of a crossover between parents � and e . Thus,
the expected offspring fitness cannot be far from the mean
parental fitness.

However, a counterexample to the predictive ability of xzyK{
has already been shown in Altenberg (1995). An incor-
rect prediction of poor GA performance can be made byx yK{ if the average offspring fitness does not increase with
parental fitness, but the variance does, so that the chance of
producing fitter offspring remains high as parental fitness
increases. Thus one can have xZy5{�� 0 and at the same time
rapid evolution toward the global optimum. The use of xzyK{
as a predictor of GA performance is thus secure only within
certain constraints on the fitness function.
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Figure 3: The evolvability of the population under mutation
or crossover, with random search plotted for comparison.
The probability that offspring are fitter than their parents is
plotted as a function of parental fitness. With crossover, the�

coordinate is the maximum of the two parents’ fitnesses.

3.3.2 Evolvability Analysis

The chance that a genetic operator produces offspring fit-
ter than their parents is called ‘probability of success’ in
the evolution strategy literature (Rechenberg, 1973; Beyer,
1993), and ‘evolvability’ by Altenberg (1995). An exami-
nation of evolvability for the test function is revealing.

Figure 3 shows numerical results for the proportion of off-
spring that are fitter than parents under the test function.
Values are obtained in the actual runs of the GA, rather than
from random sampling of bitstrings. This is consequential
for crossover, since its product depends on the composition
of the population. A tally is made of the number of times
offspring are fitter than both parents. This is done by split-
ting the fitness values into 256 bins. When an offspring is
fitter than either parent, the bin corresponding to the fittest
parent has its tally increased by one. At the end of the
GA run, the tallies in each bin are normalized by the total
number of parental pairs corresponding to that bin, which
yields the frequency data in Figure 3.

To compare crossover with mutation and random search,
single-bit mutants are generated from each parent during
the GA run and tallies made in the same way to give the
frequency that mutation produces fitter offspring. These
mutants are not included in the offspring populations, so
mutation is not part of the GA dynamics. In the same fash-
ion, the probability that random bitstrings are fitter than
parents is tallied, which simply produces the fitness distri-
bution for the entire search space (when the frequencies are
subtracted from 1) .

In Figure 3 we see that crossover and mutation both main-
tain high evolvability throughout the range of fitness values.
Both are roughly linear functions of fitness. For compar-
ison, the evolvability value of random search rapidly van-
ishes as fitness increases, as expected.

Figure 3 suggests that the mutation operator should be as
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Figure 4: A plot of the test fitness function versus crossover
distance—the number of discontinuities between 0s and 1s
in the bitstring. The bitstring length is &�� 64. Values for
the entire search space are plotted.

good or better than crossover at finding the global optimum
of the test function, since its evolvability values remain on
the same order as fitness increases, and actually exceed that
of crossover for the highest fitnesses. However, a finer
resolution magnification near fitness 1 � 0 would show that
for the next-to-fittest bitstrings (strings with a run of &O. 2
zeros and a run of &�. 2 ones), mutation has no chance of
producing the global optimum, while crossover has a posi-
tive chance that depends on the population composition. In
simulations where the GA is run using mutation and no re-
combination, it converges on these next-to-fittest bitstrings,
and never finds the global optimum of all 1s. This feature of
the dynamics is thus predicted by the evolvability analysis.

3.3.3 Crossover-Based Fitness Distance Correlation
Analysis

Jones (1995) suggests that a more accurate version of FDC
might be developed if the genetic operators themselves
could be used to define the distance from the optimum.
Because recombination is a frequency-dependent operator,
it can not be strictly mapped to a static distance metric.
The dynamical effects of recombination depend inextrica-
bly on the composition of the population. Nevertheless, if
we can relax the stringency of conditions we require of the
crossover-based distance, a number of candidate measures
can be proposed.

First is the simple implementation of the heuristic used in
the derivation of the test function: the crossover distance
is set to be

\ �5�]� , the number of discontinuities between
0s and 1s in the bitstring � . This value corresponds to
the minimum number of crossovers required to transform
a bitstring into the optimal bitstring. Using this distance
measure, an FDC scatter plot is shown in Figure 4.

This crossover-based FDC scatter plot shows a clear neg-
ative FDC coefficient for the test function, and predicts



LEE ALTENBERG 7

100 200 300 400

0.2

0.4

0.6

0.8

1

F
IT

N
E

S
S

CROSSOVER ‘DISTANCE’ FROM OPTIMUM

Figure 5: A plot of the test fitness function versus
crossover distance—the number of generations of single-
point crossover starting with the global optimum and its
complement. The initial population contains the recombi-
nant pairs of offspring from single crossovers between the
optimum and its complement. Subsequent generations are
made by replacing the population with crossover recom-
binants from randomly mated parents. This is plotted for
398 generations. Population size is 1500, bitstring length
is &s� 64.

accurately that it will be straightforward to optimize using
crossover.

A second crossover-based distance measure is derived by
applying crossover in reverse. We wish to give a distance
value of 1 to all the bitstrings that can produce the global
optimum through a single application of crossover. A dis-
tance value of 2 is given to the all the bitstrings that can
produce the distance 1 bitstrings, and so forth, until the en-
tire search space is labeled. The first set of bitstrings can be
generated by applying crossover to the global optimum and
its complement. The validity of this reverse application of
crossover depends on the fact that crossover is symmetric
in the transition probabilities between pairs of parents and
pairs of recombinants. 1

In this second method of generating a crossover-based dis-
tance, a population is initialized with the pairs of recom-
binant offspring from single crossovers between the global
optimum bitstring and its complement. This population
is randomly mated to produce new parental pairs, each of
which are replaced by the pairs of their recombinant off-
spring to generate the next generation. This new generation

1It should be noted that the crossover-based distances inves-
tigated here are specific to single-point crossover. In the case of
free recombination (‘uniform crossover’), the entire search space
would have to be considered to be one recombination-distance unit
away from the global optimum, because a single recombination
event can yield any given bitstring if the correct bits are transmit-
ted from complementary parents. Different genetic operators my
thus present challenges for defining operator-based distances.

Table 2: Performance of the mutation-selection genetic
algorithm on the test function. Columns are: the length of
the bitstrings, the mean number of fitness evaluations among
runs that found a sub-optimum, the portion of runs that
found a sub-optimum, and the portion of the search space
that was sampled in successful runs, which is approximated
by 103 v 36 � 0 v 24 $ . Mutation probability was 0 � 2, population
size was 200, the maximum number of fitness evaluations
was 2 " 000 " 000, and 200 runs were made for each entry.

Bits Mean Evals Success Portion
24 67.5K 100% 4 � 0 w 10 � 3

32 325K 99.5% 7 � 6 w 10 � 5

40 705K 82.5% 6 � 4 w 10 � 7

will be labeled with a distance value of 2. This process
is iterated, and bitstrings that are further and further away
from the global optimum are generated. The generation
number is used as the ‘crossover distance’ value.

In this algorithm, a small proportion of offspring will be
produced which have already appeared in an earlier gener-
ation, and should rightly be excluded from the population.
However, this contamination by lower distance bitstrings
should be negligible for very large search spaces and pop-
ulation sizes that are large enough to make it unlikely that
identical parents mate.

A fitness-distance scatter plot can be produced from these
iterations, and is shown in Figure 5. This plot shows a clear
negative correlation between fitness and crossover distance
for the first 100 or so generations. After a certain point, the
population has reached a quasi-equilibrium, and the distri-
bution of fitnesses does not change with further generations.
Under FDC Conjecture 1., this scatter plot correctly predicts
that the test fitness function should be straightforward for
the GA to optimize.

Therefore, this test function produces support for FDC Con-
jecture 1 under two different crossover-based distance mea-
sures, while it produces a contradiction to FDC Conjecture
3(a) under the Hamming distance measure.

3.3.4 Mutation-Based Fitness Distance Correlation
Analysis

Another test of these two operator-based distance measures
is afforded by the behavior of mutation-selection genetic
algorithms (with no recombination) on the test function.
Under mutation as the sole genetic operator, it is difficult
for the GA to find the global optimum of the test func-
tion, but easy for it to find one of the near-optimum bit-
strings, one with only one or a few discontinuities between
0s and 1s. Table 2 shows the success of the mutation-
selection GA in finding the next-to-fittest sub-optima, a
bitstring �9�X�R� 00001111 �R�X� � or �9�X�R� 11110000 �R�R��� of &O. 2
zeros and &O. 2 ones, for a variety of bitstring lengths. Its
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Figure 6: A plot of the test fitness function versus Hamming
distance to the sub-optimal bitstring ���R�R� 00001111 �R�R��� .
Bitstring length is &s� 20.

performance in finding the sub-optima is comparable to the
performance of the recombination-only GA in finding the
global optimum.

Can the two operator-based distance measures developed in
Section 3.3.3 predict this behavior of the mutation operator
on the test function?

The first operator-based distance measure in Section 3.3.3 is
the minimum number of applications of the operator needed
to transform one bitstring into another. In the case of sin-
gle bit-flip mutation, this is simply the Hamming distance.
Therefore, the mutational equivalent to the crossover dis-
tance plot of Figure 4 is already familiar, namely Figure 2,
the Hamming-based scatter plot. However, Figure 2 was
made using the global optimum as the reference point for
the distance values.

Suppose that one of the sub-optimal bitstrings is used as
the reference point for the Hamming distance measure? In
this case, we obtain the fitness-distance scatter plot shown
in Figure 6. The fitness distance correlation coefficient is
zero, because the plot is symmetrical about the Hamming
distance of &O. 2. However, it displays interesting structures
in the scatter plot. Above fitness values of 0 � 8, there is
a path of monotonically increasing fitnesses from points
a Hamming distance of 7 away from the sub-optimum,
and a mirror image path going to the complementary sub-
optimum. The plot does not reveal whether mutation can
move from one point on the path to the next, but in fact it
can; the points are the bitstrings with a single discontinuity
between 0s and 1s. In the numerical simulations of the
mutation-selection GA, these paths comprised the typical
sequence in which the sub-optimal bitstrings evolved. So
Figure 6 suggests that the the sub-optimal bitstrings may be
straightforward to find with the mutation-selection GA, and
Figure 2 suggests that the global optimum will be difficult
to find with the mutation-selection GA. These predictions
are in accord with the results from running the GA.
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Figure 7: A plot of the test fitness function versus mutation
distance—the number of generations of single bit-flip mu-
tation. (A) Starting with the global optimum. (B) Starting
with the sub-optimum genotype, a run of 32 zeros and 32
ones. Population size is 3,000, bitstring length is &[� 64.
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The second operator-based distance measure in Section
3.3.3 consists of applying the genetic operator iteratively
to a population in reverse, beginning with the global opti-
mum and evolving the bitstrings that would produce it. In
the case of recombination, the validity of this reverse appli-
cation of the operator relied on the symmetry in transition
probabilities between parents and recombinant offspring.
In the case of single bit-flip mutation, this symmetry also
exists between parent and mutant offspring. Using muta-
tion, two analogs to Figure 5 will be obtained: the first will
use an initial population composed of the global optimum
bitstring; the second will use an initial population composed
of one of the sub-optimal bitstrings. Each iteration consists
of replacing the population with single-bit mutants of its
bitstrings. The fitnesses of the mutant genotypes are plot-
ted versus the generation in which they occur. The results
are shown in Figure 7.

The two plots (A) and (B) are revealing. When the popula-
tion begins with the sub-optimum bitstring (B), the distri-
bution of fitnesses moves steadily downward as the number
of generations away from the sub-optimum grows. Figure
7(B) is reminiscent of Figure 5.

In contrast, when the global optimum bitstring is used to
create the initial population (A), the distribution of fitnesses
follows an uneven course. The fitnesses drop from 1 � 0 to
0 and 0 � 492 as one moves a single mutation away from
the global optimum. At two mutations away, mutants with
fitness 0 � 74 appear. At three mutations away, bitstrings
with fitness 0 � 83 appear. Therefore, if one begins with a
highly fit bitstring, the mutation operator cannot produce
a path to the global optimum that has monotonically in-
creasing fitnesses. During the run of the mutation-selection
genetic algorithm, if the mean fitness of the population has
evolved to greater than 0 � 492, then the bitstrings that are
one mutation away from the global optimum will be unable
to increase in frequency when they appear in the popula-
tion. Thus Figure 7(A) can be interpreted as showing that
the global optimum is surrounded by an ‘adaptive valley’
with respect to the mutation operator under the test fitness
function.

These two mutation-based distance measures produce scat-
ter plots that distinguish the global optimum from the sub-
optimum bitstrings. Although the plots are not completely
unambiguous in what they reveal, they are consistent with
the prediction that a mutation-selection genetic algorithm
(with no recombination) will find the sub-optimal bitstrings
easily, but not the global optimum bitstring with this test
function. Therefore, for both the mutation and crossover op-
erators, the cases examined support the method of operator-
based fitness distance correlation analysis.

4 Discussion

A fitness function is derived here that serves as a counterex-
ample to one of the conjectures of fitness distance correla-
tion analysis. The counterexample is derived by using the
genetic operator itself—single-point crossover— to define
the distance measure between bitstrings and the global op-
timum. The fitness function that is devised has zero fitness
distance correlation, and shows no relationship between
Hamming distance and fitness in a scatter plot, indicating
that it should be difficult for a genetic algorithm to optimize
under the FDC conjecture.

Contrary to the expectations of FDC analysis, the fitness
function is found to be easily optimized by a GA using
single-point crossover and roulette wheel selection, and the
efficiency of the GA (as measured by the proportion of the
search space sampled during the search before finding the
global optimum) increases with the size of the search space.

The failure of Hamming-distance based FDC analysis on
this test function poses the question of whether other candi-
date methods of GA analysis could do better. One of these
methods, evolvability analysis, is investigated. The test
function is revealed to exhibit high evolvability throughout
its range of fitnesses, which is concordant with the test func-
tion being easy for a GA to optimize. Evolvability analysis
also predicts that if mutation is the sole genetic operator, it
should yield high fitnesses, yet be unable to find the global
optimum. This prediction is borne out.

But simple evolvability analysis clearly has its shortcom-
ings as well. The long path problem (Horn, Goldberg, and
Deb, 1994) offers a good counterexample. Even though the
chance of parents producing fitter offspring through muta-
tion remains high as fitnesses increase, single-bit mutation
in the long path problem can be inefficient at finding the
optimum because the path it travels to the optimum can be
quite long.

In the evolution strategy literature (Rechenberg, 1973;
Beyer, 1993), operators that produce the highest rates of
progress toward the global optimum do not generically pro-
duce the highest evolvability values. Rechenberg (1973), in
the formulation of his ‘1 . 5 rule’, found that the maximum
rate of progress for a broad class of cases occurs for evolv-
ability values near 1 . 5. When the search space is �+� and the
fitness function is continuous, the Gaussian mutation oper-
ator with small amplitude will produce evolvability values
near 1 . 2. Larger amplitudes produce lower evolvability
values, but larger fitness increases when they do occur, so
there is an intermediate optimum. This tradeoff has been
explored in variety of cases by Fogel and Ghozeil (1996),
Therefore, a refinement of evolvability analysis needs to
take into account the amount of fitness increase that occurs
in an offspring, not just that it occurs.

Evolvability analysis is also no simpler computationally
than running the genetic algorithm itself, because it de-
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pends on the GA to find the sample points of high fitness
that it uses in the analysis. Evolvability is potentially in-
vertible, however. Which is to say, it has the potential to be
used in constructing well-performing genetic algorithms.
It suggests that one should choose, wherever feasible, to
use genetic operators and representations that maintain a
high likelihood of producing fitter variants as the fitness of
parents increases.

Jones’s (1995) suggestion that an operator-based distance
would produce a more sound foundation for fitness distance
correlation analysis is investigated. Two different distance
measures based on single-point crossover are defined, and
fitness-distance scatter plots are produced using these dis-
tance measures. With these measures, FDC correctly pre-
dicts that the test function will be straightforward for a GA
to optimize. Two different distance measures based on sin-
gle bit-flip mutation are also defined, and fitness-distance
scatter plots are produced using these distance measures.
With these measures, FDC is concordant with the result
that a GA using mutation as its only genetic operator will
find the sub-optimal bitstrings, but not the global optimum.
Hence Jones’s conjecture about the greater soundness of
operator-based distances is supported.

This study confirms Jones’s (1995) concerns regarding the
apparent lack of connection between the actual dynamics
of the genetic algorithm and Hamming-distance based FDC
analysis. A counterexample is derived to one of the FDC
conjectures, the case of zero fitness distance correlation.
However, the question remains as to whether counterexam-
ples can be found to Hamming-distance based FDC in the
cases of large negative or positive FDC coefficients. Work
on this question could reveal whether a deeper connection
exists between Hamming distance and recombination in
genetic algorithm dynamics.
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