Строение нуклеиновых кислот Лекция 11

Межнуклеотидные взаимодействия.

Взаимодействие оснований нуклеиновых кислот: копланарные, стопочные. Конформации одноцепочечных полинуклеотидов. Регулярные структуры. Двухцепочечные структуры полинуклеотидов. Двойная спираль. Степени свободы, спиральные параметры. Регулярные формы двойной спирали: А, В, Z. Структурные особенности. Условия существования различных форм. Стабильность форм. Зависимость стабильности и детальной конформации двойной спирали от контекстного состава. Конформационная подвижность ДНК.

Межнуклеотидные взаимодействия

Два основных типа взаимодействий оснований нуклеиновых кислот:

- копланарные основания в одной плоскости
- стопочные основания в параллельных плоскостях

Стопочные взаимодействия – ван дер ваальсовы взаимодействия

Таблица. Параметры стопочных ван дер ваальсовых взаимодействий Нуклеиновых оснований

основание	d min, A	- ε, ckal/mol
Α	3.25	7.2
G	3.25	7.5
Т	3.35	5.9
U	3.30	5.1
С	3.25	5.4

Стопочные взаимодействия не параллельных плоскостей оснований быстро уменьшаются –

Взаимодействия копланарных оснований

 значительное количество доноров и акцепторов водородной связи атомов оснований и рибозы допускает большое количество конфигураций пар оснований, взаимодействующих несколькими водородными связями

Номенклатура типов конфигураций взаимодействующих пар

Рис.11-2.

Максимальное количество конфигураций для пары оснований X-Y Гребни(X)*гребни(Y)*Ориентации Гликозидной связи(X-Y) = 3*3*2 = 18

Максимальное количество конфигураций для всех возможных пар оснований (A,G,C,T) : 4*3* **18** = 216

(N. B. Leontis et al.Nucl.Acid.Res. 2002, 30, n. 16, 3497-3591)

Канонические пары оснований – комплиментарные пары

Рис. 11-3.

Рис. 11-4.

Энергия Н-связей: WC(GC) > WC(AT) (AU)

Не канонические пары оснований

Рис. 11-5.

Примеры пар Cis/WC-HS

Рис. 11-6.

Рис. 11-8.

Рис. 11-9.

Рис. 11-10.

Энергии копланарных взаимодействий оснований

для 20 конфигураций пар, образующих две и более Н-связи варьируют:

-21.0 (GC) > -19.5 (GG) > -16.9 (AG)> -12.5 (AT) >...>-4.4(TC)

(Воробьев Ю.Н. 1984. Молекулярная биология т.18, в.4, 933-944)

Триплеты и квартеты копланарных оснований

Рис. 11-11.

Найдены в реальных структурах

Конформации одноцепочечных полинуклеотидов.

Регулярные структуры – спирали

Основные энергетические детерминанты структуры –

- каноническая конформация мономерной единицы +
- максимальные стопочные взаимодействия между основаниями

поли-(dA)10

спирали характерны для коротких < 10 нуклеотидов гомо-нуклеотидных цепей

длинные одноцепочечные полинуклеотиды формируют сложные вторичные и пространственные и структуры

3'-end

5'-end

Рис. 11-12.

Двухцепочечные структуры полинуклеотидов Двойная спираль ДНК

- важнейшая биомолекула –

Watson-Crick – исходные биохимические данные:

- две комплиментарные анти параллельные цепи
- 5'ATCGCGTA3'
 - 3'TAGCGCAT5'
- рентгеноструктурные данные очень низкого разрешения
- симметрия спирали
- расстояние между основаниями вдоль оси спирали

→ пространственная модель в виде двойной спирали

1953 1978 1981 2000

не верна в	структуры	динамические
деталях	высокого разрешения	модели

Рис. 11-13.

(В.Иванов Ж.Молек.Биол. 1983, т.17, №8, с.616)

Спиральные параметры

- основные энергетические детерминанты
- канонические конформации нуклеотидов
- взаимодействия оснований :
 - •компланарные комплиментарных пар
 - •стопочные взаимодействия соседних по цепи пар оснований

Конформационные параметры двойной спирали – детальное расположение пар оснований

Рис. 11-15.

B-DNA A-DNA Z-DNA

Регулярные формы двойной спирали: A, B, Z

Рис. 11-16.

Регулярные формы двойной спирали: A, B, Z

параметр	A-DNA	B-DNA	Z-DNA
Спираль	Правая	Правая	Левая
Типичная	GGGGGG	AAAAAA	GCGCGCGCGC
последовательность	G-богатые	А- богатые	Poly-(GC)
Пар на виток	11	10	12
h, Å шаг на моном.	2.6	3.4	3.8
диаметр спирали, Å	26	20	18
шаг на виток	28	34	45
Twist [°] - Ω	33	36	-60 dimer
Вр наклон к оси $^{\circ}$ - η	20	0	-7
Конформация	C3'-endo	C2'-endo	C2'-endo (C)
рибозы			C3'-endo (G)
Конф гликозидной	анти	анти	анти (С)
СВЯЗИ			син (G)
Большая бороздка	Узкая, глубокая	Широкая,	Выпуклая
		глубокая	
Малая бороздка	Широкая, мелкая	Узкая,	Узкая, глубокая
_	-	глубокая	-

Таблица 11-1. Значения спиральных параметров и структурные особенности

Средние значения конформационных параметров форм ДНК

	α Ρ- Ο5'	β 05'-C5	γ C5'-C4'	δ P C4'-C3'	ε C3'-O3'	ξ Ο3'-Ρ	χ C1'-N
A-DNA	-62	173	52	88 3	178	-50	-160
B-DNA	-63	171	54	123 131	155	-90	-117
Z-DNA(G)	47	179	-165	9	256	48	68
Z-DNA(C)	-137	-139	56	138 152	266	223	-159

Таблица 11-2. Средние значения конформационных параметров рибозофосфатного остова

Таблица 11-3. Средние значения спиральных параметров

	dx	dy	h	Эy	ηx	Ωz	Rph, A	Dpp, A
A-DNA	4.0	0.0	2.87	0	13.5	32.2	8.8	5.6
B-DNA	0	0	3.33	0	0	36.0	9.1	6.9
Z-DNA	-3.0	2.5	-3.72	0	-7	-52 G-C	8.0	4.7
(G)								
Z-DNA	-3.0	2.5	-3.72	0	-7	-8 C-G	6.9	7.1
(C)								

Конформации нуклеотидов наблюдаемые в кристаллах ДНК дуплексов

Рис. 11-17.

Условия существования различных форм

ДНК формы переходят друг в друга при изменении условий внешней среды

- В форма стабильна при нормальных физиологических условиях
- **дегидратация**, понижение относительной влажности до **75%** инициирует переход **В→А**
- в смеси вода-этанол(метанол) при росте доли спирта > 75%, переход $\mathbf{B} \rightarrow \mathbf{A}$
- при увеличении концентрации соли ~ 5 М $B \rightarrow Z$ для (GC)_n

Таблица 11-4. Разность свободных энергий форм ДНК при физиологических условиях

$B \rightarrow A d(AA)$	1.5 ккал/моль/пару
$B \rightarrow A d(GG)$	0.5
$B \rightarrow A d(GC)$	1.4
$B \rightarrow Z d(GC)$	0.8
B→Coil d(GC)	1.2

Зависимость детальной конформации и стабильности двойной спирали от контекстного состава

- анализ экспериментально определенных атомных 3Д структур ДНК дуплексов показал наличие контекстной зависимости спиральных параметров от типа соседних оснований

5'AT	5'AT	5'AT	5'AT	5'TA
$1 \downarrow \uparrow$	$2 \downarrow \uparrow$	3 ↓ ↑	4 ↓ ↑	5 ↓ ↑
3'AT	3'TA	3'GC	3'CG	3'AT
5'TA	5'TA	5'GC	5'GC	5'CG
6 ↓ ↑	7 ↓ ↑	8 ↓ ↑	9 ↓ ↑	10 🗼 ↑
3'GC	3'CG	3'GC	3'CG	3'GC

Таблица 11-5. Десять типов дидуплексов ДНК

		Pur A		Pur (r J	Pyr T		Pyr (2
		Dna	Dna-	Dna	Dna-	Dna	Dna-	Dna	Dna-P
		Р		Р		Р			
Pyr	θ	2.6	3.3						
Т	n	0	0						
	Ω	40.0	37.8						
Pyr	θ	1.1	4.7	6.6	5.4				
С	n	0.6	0.5	0	0				
	Ω	36.9	37.3	31.1	36.1				
Pu	θ	0.5	0.7	2.9	4.5	-0.6	1.1		
r	n	-0.4	-1.4	-2.0	-1.7	0	0		
Α	Ω	35.8	35.1	30.5	31.9	33.4	29.3		
Pu	θ	-0.1	1.9	6.5	3.6	0.4	0.7	-7.0	0.3
r	n	-0.4	-1.5	-1.1	-0.1	-0.9	-0.1	0	0
G	Ω	39.3	36.3	33.4	32.9	35.8	31.5	38.3	33.6

Таблица 11-6. Спиральные параметры динуклеотидных шагов в ДНК дуплексах

Dna - ДНК дуплексы

Dna-P - комплексы с белками

красные – большие различия для Dna /Dna-P

A.Gorin et al. 1995 J.Mol.Biol. v.247, p.34-48 W.K.Olson, et al. 1998. Proc.Natl.Acad.Sci. USA v.95, p.11163-68

Зависимость стабильности двойной спирали от контекстного состава

Термодинамическая стабильность GC богатых участков ДНК выше, чем АТ богатых.

Термодинамическая стабильность = сумма стопочных и копланарных взаимодействий оснований

Конформационная подвижность ДНК

Кристаллические структуры ДНК дуплексов показывают – значительный разброс значений конформационных параметров

ДНК дуплекс в водном растворе – конформаионно подвижная система - значительные флуктуации в окрестности В-формы

Метод Молекулярной динамики – моделирование термических флуктуаций

Таблица. Величины **термических флуктуаций** конформационных параметров, Т=300 К в водном растворе. Метод молекулярной динамики

$<\Delta\Omega z^{2}>^{1/2}$	<∆ηx²>¹/2	$<\Delta \theta y^2 >^{1/2}$	<∆ Prop ² > ^{1/2}
4. 7°	6.4 °	10.2°	16.6°

Рис. 11-19.

Молекулярная Динамика дуплекса ДНК в водном растворе

днк14:5'(ACGTTGAACGACTG)3'

Рис. 11-19. Флуктуации угла спирального вращения **Twist** для шагов T4T5 и A7A8 – синий (черный) и зеленый (серый) цвета, соответственно.

Рис. 11-20. Значения спирального параметра – Twist, Roll для пар оснований днк дуплекса; зеленый (серый) - по результатам моделирования методом молекулярной динамики; синий – структура в кристалле.

