II. Принципы моделирования структуры биополимеров

Лекция 6

Метод молекулярной механики. Методы определения оптимальных конформаций макромолекулы.

Методы локальной и глобальной оптимизации функции многих переменных. Метод наискорейшего спуска. Метод сопряженных направлений. Генетический алгоритм оптимизации.

Метод Монте Карло генерации микроканонического ансамбля конформаций.

Оптимизация методом моделирования «отжига» системы.

Метод молекулярной механики

- метод приближенного расчета Поверхности Потенциальной Энергии в окрестности локальных минимумов и путей переходов между ними

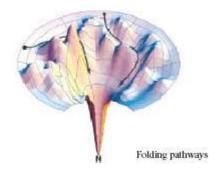


Рис. 6-1.

Оптимальные конформации

- глобальный минимум ППЭ
- локальные минимумы ППЭ
- пути переходов между конформациями

Методы определения оптимальных конформаций макромолекулы

- методы оптимизации функций многих переменных

оптимизируемая функция – целевая функция

$$\Phi(\mathbf{x}) = \Phi(\mathbf{r}_1, \dots, \mathbf{r}_N) = U_{conf}(\mathbf{r}_1, \dots, \mathbf{r}_N) + P(\mathbf{r}_1, \dots, \mathbf{r}_N)$$

это конформационная энергия + дополнительные ограничения (penalty)

Например,

- считали из PDB структуру некоторого белка,
- добавили атомы водорода,
- необходимо релаксировать конформационную энергию структуры, так чтобы структура была устойчивой метастабильной
- локальная оптимизация

Методы локальной оптимизации функций многих переменных

- метод наискорейшего спуска
- метод сопряженных градиентов
- метод Нютона-Рафсона, квази -Ньютоновские методы

Постановка

- имеем начальную точку \mathbf{x}_0 , **необходимо** построить алгоритм движения к минимуму функции $\Phi(\mathbf{x})$, т.е. последовательность точек \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 ,..., \mathbf{x}_n в которых функция убывает и сходится к точке минимума

Решение:

в окрестности \mathbf{x}_k представим функцию квадратичной формой

$$\Phi(\mathbf{x}) = \Phi(\mathbf{x}_k) + \Phi(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k) + (\mathbf{x} - \mathbf{x}_k) \Phi(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k)/2 + \dots$$
 (6.1)

условие минимума:

$$\Phi(\mathbf{x}_{\mathrm{m}})=0$$
 или $(\frac{\partial \Phi}{\partial x_{i}})_{\mathbf{X}=\mathbf{X}_{m}}=0$ для всех і
$$\Phi(\mathbf{x}_{\mathrm{m}})-$$
 матрица вторых производных
$$\frac{\partial^{2} \Phi}{\partial x_{i} \partial x_{j}}=\mathbf{H}$$
 матрица **гессиан**, **положительно определена**

Ищем минимум квадратичной формы (6.1)

Метод наискорейшего спуска

1) имеем точку x_k

вычисляем вектор направления спуска, направление антиградиента

$$\mathbf{s}_{k} = -\mathbf{g}_{k}$$

$$\mathbf{g}_{k} = \nabla \Phi(\mathbf{x})_{\mathbf{X} = \mathbf{X}_{k}}$$
(6.3)

2) следующая точка

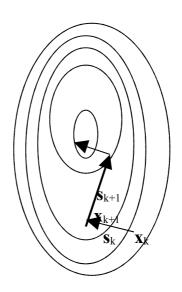
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \lambda \mathbf{s}_k$$
 (6.4)
 λ - длина шага спуска реализует минимум функции $\Phi(\mathbf{x}_k + \lambda \mathbf{s}_k)$ по направлению $\partial \Phi(\mathbf{x}_k + \lambda \mathbf{s}_k)$

$$\frac{\partial \Phi(\mathbf{x}_k + \lambda \mathbf{s}_k)}{\partial \lambda} = 0,$$

$$\lambda{=}\lambda_k$$

3)
$$x_{k+1} = x_k + \lambda s_k$$

возврат к 1)



- метод удовлетворительно работает
- эффективен вдали от точи минимума, быстро сходится к окрестности минимума
- не эффективен в окрестности точки минимума, особенно для функции овражного типа

• направление спуска выбирается с учетом предшествующего направления $\mathbf{s}_k = -\mathbf{g}_k + \gamma_k \mathbf{s}_{k-1}$ (6.5)

скаляр
$$\gamma_k$$

$$\gamma_k = \frac{\mathbf{g}_k \mathbf{g}_k}{\mathbf{g}_{k-1} \mathbf{g}_{k-1}}$$

- направления спуска метода сопряженных градиентов выбирается более эффективно в области оврагов, чем в методе наискорейшего спуска,
- быстрее ведет к точке минимума,
- работает для овражных функций,
- хорошо работает в окрестности точки минимума

Метод Нютона-Рафсона, квази Ньютоновские методы

- наиболе точный метод расчета направления спуска использует расчет матрицы Гессиана,

$$\mathbf{s}_{k} = -\mathbf{g}_{k} \mathbf{H} \tag{6.6}$$

минимум определяется точно, если $\Phi(\mathbf{x})$ – квадратичная форма (6.1) $\mathbf{x}_{\min} = \mathbf{x}_k + \mathbf{s}_k$

для произвольной функции

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \lambda \mathbf{s}_k$$

с величиной шага λ реализующий минимум функции по направлению \mathbf{s}_k

- быстро сходится, несколько итераций
- точен вблизи минимума
- вычислительно трудоемкий
- редко используется для макромолекул

квази Ньютоновские методы -

приближенный расчет матрицы гессиана по ходу итераций,

- метод Давидона-Флетчера,
- метод Флетчера-Пауэла.

ППЭ многоатомных биомолекул очень сложная –

- овражного типа (следствие корреляций положений атомов), направления движения атомов резко не эквивалентны на ППЭ,
- множество локальных минимумов (в том числе артефакты силового поля),
- последовательность точек \mathbf{x}_k алгоритмов локальной оптимизации сходится медленно, т.к. ППЭ аппроксмируется квадратичной формой только в малой окрестности точки \mathbf{x}_k .

Псевдо-глобальная оптимизация

Генетический алгоритм оптимизации

[Goldberg, 1989; Judson P.S. J.Comp.Chem. 1993, 14,p.1407-1414]

Реализует процесс биологической эволюции для определения оптимальных состояний системы —

метод псевдоглобальной оптимизации функции многих переменных

 $\Phi(\mathbf{x})$ –

хі - вектор оптимизируемых параметров,

ГА работает с дискретными значениями параметров,

Подготовка системы

1. определение генов

- 1.1 задаем область определения каждой переменной x_i
- 1.2 назначаем переменным множество дискретных пронумерованных значений определения n_i число дискретных значений переменной i
- 1.3 кодируем n_i строкой бит в двоичном коде

например углы вращения $0<\phi<360$, разбиваем на 32 дискретных значения = 0,12,24,...,348=0,1,2,...,32= = 00000,00001,00010,00011,....,11111 каждый параметр кодируется строкой из 5-ти элементов 0 1

- 1.4. каждый параметр ген
- 1.5. строка параметров = строка генов = хромосома

Примеры генов – параметров и хромосом

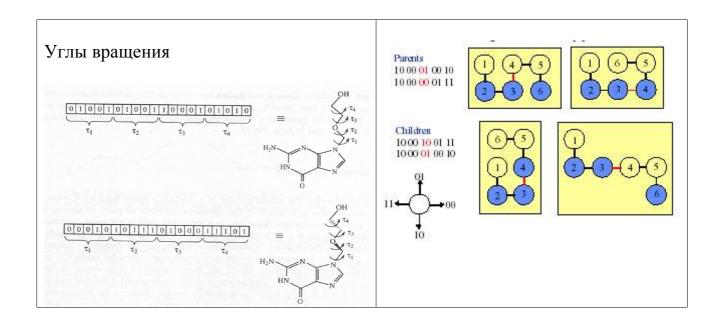


Рис. 6-2.

2. Генерация исходных особей – множества генов и хромосом

- некоторое количество **N хромосом** случайно покрывающих всю область определения
- вычисляется качество хромосомы, величина функции $\phi_i = \Phi(\chi_i)$

Организация эволюционного цикла

Для организации эволюции генов определяются 4 операции

- 1. выживание уничтожение особей (хромосом) плохого качества
- 2. скрещивание создание хромосомы потомка из пары родителей
- 3. мутация изменение гена в хромосоме потомка

Основной эволюционный цикл

- 1. **выживание,** расчет качества особей популяции P_k и выживание 1/2 лучших особей из популяции
- 2. скрещивание пар хромосом родителей, генерация N/2 детей
 - случайный выбор пар родителей
 - случайный выбор позиции точки кроссовера вдоль гена, обмен частями последовательности в паре **хромосом**

```
111110000010101 родители ----> 111110010001110 100011110
```

3. **мутация случайного** гена в хромосоме потомства – с вероятностью gen_{mut} « 1 малая величина

```
1111110010001110 ----> 1111110011001110
```

- 4. восстановление популяции до N особей = P_{k+1}
- 5. сравнение популяций P_{k+1} и P_k
- 6. возврат на 1. если P_{k+1} и P_k различны
- 7. В идеале, все особи P_m одинаковы и имеют максимально-возможное качество глобальный минимум

В реальности – ГА алгоритм не гарантирует достижение глобального минимума, но генерирует популяцию хорошего качества

Метод Монте Карло

- генерация микроканонического ансамбля конформаций при заданной температуре T

энергия системы $\Phi(\mathbf{x}) = \Phi(\mathbf{r}_1, \dots, \mathbf{r}_N)$

Система принимает состояния \mathbf{X}_{α} , $\alpha = 1, 2, ..., K \to \infty$ вероятность найти систему в состоянии \mathbf{X}_{α} - распределение Гиббса

$$\rho_{\alpha} = \exp(-\Phi(\mathbf{x}_{\alpha})/kT)/Z$$

вероятность найти систему в состоянии \mathbf{X}_{β} $\rho_{\beta} = \exp(-\Phi(\mathbf{X}_{\beta})/kT)/Z$

 $\pi_{\alpha\beta}$ и $\pi_{\beta\alpha}$ вероятности переходов между состояниями

в состоянии равновесия, должен соблюдаться

- **-принцип микроскопической обратимости** переходов между состояниями **-принцип детального равновесия** между состояниями

$$\rho_{\alpha}\,\pi_{\alpha\beta} = \rho_{\beta}\,\pi_{\beta\alpha}$$

либо

$$\pi_{\alpha\beta}/\pi_{\beta\alpha} = exp(\text{-}[\Phi(\boldsymbol{x}_\beta \text{ })\text{- }\Phi(\boldsymbol{x}_\alpha)]/kT)$$

откуда следует что вероятности переходов

$$\pi_{\alpha\beta} = \exp(-[\Phi(\mathbf{x}_{\beta}) - \Phi(\mathbf{x}_{\alpha})]/kT)$$
, если $\Phi(\mathbf{x}_{\beta}) > \Phi(\mathbf{x}_{\alpha})$

$$= 1 \qquad \qquad \text{если } \Phi(\mathbf{x}_{\beta}) < \Phi(\mathbf{x}_{\alpha})$$

- это метод Метрополиса – метод существенной выборки

Алгоритм метода Монте Карло

- 1) имеется некоторое начальное состояние \mathbf{X}_{α}
- 2) выберем случайно состояние \mathbf{x}_{β}
- **3) перейдем** в новое состояние \mathbf{x}_{β} согласно критерию Метрополиса $\pi_{\alpha\beta} = 1$, если $\Phi(\mathbf{x}_{\beta}) < \Phi(\mathbf{x}_{\alpha})$ энергия понижается

$$\pi_{\alpha\beta}$$
 = exp(-[$\Phi(\mathbf{x}_{\beta}$)- $\Phi(\mathbf{x}_{\alpha})$]/kT) , если $\Phi(\mathbf{x}_{\beta}$) > $\Phi(\mathbf{x}_{\alpha})$ -энергия повышается

как принять состояние с вероятностью $\pi_{\alpha\beta} < 1$? -генерируем случайное число ξ , равномерно распределенное на интервале (0,1)

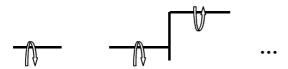
-если $\xi < \pi_{\alpha\beta} = \exp(-[\Phi(\mathbf{X}_{\beta}) - \Phi(\mathbf{X}_{\alpha})]/kT)$, то состояние \mathbf{X}_{β} принимается

4) возврат к пункту 1)

Оптимальная работа алгоритма

достигается тогда, когда состояния α , β выбираются **случайно**, но достаточно **близкими**

- переход α --> β состоит из случайной комбинации малых «стандартных движений» для вращений вокруг связей



- малые вращения вокруг последовательности связей

- Свойства ансамбля состояний метода МК

•Алгоритм генерирует цепочку состояний α и число посещений nv_{α} этого состояния

 $(\alpha,nv_{\alpha}), (\beta,nv_{\beta}), (\gamma,nv_{\gamma}), \ldots$ составляющих Марковскую цепь =

- каждое состояние зависит только от одного предыдущего
- •состояния с низкой энергией достигаются с большей вероятностью
- •при достаточно долгой работе алгоритма все состояния системы будут достигнуты независимо от стартового состояния

Расчет средних характеристик

по ансамблю состояний метода МК

среднее значение энергии системы

$$\langle U \rangle = \frac{1}{\sum_{\alpha} n v_{\alpha}} \sum_{\alpha} n v_{\alpha} U_{\alpha}$$
 (6.8)

средне-квадратичная флуктуация энергии

$$<\Delta U^{2}>^{1/2} = \left[\frac{1}{\sum_{\alpha} n v_{\alpha}} \sum_{\alpha} n v_{\alpha} (U_{\alpha} -)^{2})\right]^{1/2}$$
 (6.9)

Метод МК сходится к равновесному ансамблю когда среднее

$$<$$
A $>(N_{MK}) \sim const$

независимо от числа генерированных МК состояний



Глобальная оптимизация методом МК

- моделирование «отжига» системы

МК метод сопряженный с постепенным уменьшением температуры по По специальному расписанию

T → T - ΔT через каждые N шагов

• высокие Т

 $\Delta\Phi/RT << 1$

- все состояния достижимы, возможны переходы через барьеры с высокой вероятностью, плохая начальная точка передвигается в область низкой энергии

• плавное понижение Т

- траектория МК способна преодолевать более низкие барьеры и передвигать в область низких энергий на ППЭ

